首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   2篇
  综合类   8篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
短期负荷预测中选择相似日的探讨   总被引:33,自引:0,他引:33  
合理的选择预测相似日是提高负荷预测综合预测模型预测效果的有效途径。传统依据人工经验选择相似日并不具备最好的预测效果。为了进一步提高负荷预测准确度,该文深入研究了负荷的两个特征量,认为对预测日的负荷水平和负荷曲线形状进行预测时,应该选取不同的相似日,即该文提出的趋势相似日和形状相似日;给出了这两种相似日的选择方案,从日特征量、日前趋势相似度以及这两者的综合3个角度阐述了选择预测日的趋势相似日的原理和方法;该文通过应用实例证实了其中一个方案有效地提高了负荷预测准确度。  相似文献
2.
电力系统短期负荷预测是调度中心制定发电计划及电力市场中发电厂报价的主要依据,也是能量管理系统(EMS)的重要组成部分,对电力系统的运行、控制和计划都有重要的影响,其预测精度直接影响着电力系统的经济性,综合考虑了影响电力负荷的诸多因素:负荷状况、天气情况、节假日等,分析了电力系统负荷的基本模型,提出了适合于负荷稳定,负荷变化基本由气象因素影响的电网的相似日匹配法的算法,并用VC 编程,用SQLSERVER作为数据库,实验证明,对于负荷资料和气象资料收集相对较好的地区,预测效果明显准确。  相似文献
3.
针对电力负荷短期预测精度不高的问题,提出一种基于时间序列编码和相关向量机的电力负荷短期预测方法.通过收集电力负荷实际数据,研究了日最大负荷数据之间的关系、日最大负荷与节假日的关系以及当日与对应星期数的相关性,并建立了相应的电力负荷短期预测模型.该模型采用相似日选择方法,给工作日和节假日赋予不同的权重,从电力负荷时间序列中筛选出与预测日特征相似的数据,对模型进行训练.与BP神经网络和支持向量机相比,该预测方法有更高的预测精度和更好的泛化能力,而且学习速度更快.  相似文献
4.
针对新建楼宇空调系统做短期负荷预测工作时,缺少负荷预测所需的数据,难以实现空调系统优化节能的问题,提出一种基于相似日搜索的空调短期负荷预测方法———相似日搜索算法(SASD).算法首先通过分析空调负荷特性,定义日特征向量,构造日特征矩阵,缩小相似日的搜索范围;然后基于温度、湿度和风力3种天气影响因子,计算相似日的体感温度值;接着根据模糊思想选择正确的最终相似日判定因子,搜索得到最终相似日集合;最后通过判定选择面积中心法作为预测方法,实现工作日的负荷精确预测.仿真结果和实际预测效果表明:SASD可以精确预测空调负荷值,且在不同地区及不同时期具有一定的通用性.  相似文献
5.
短期负荷预测是电力系统最常用和最重要的预测类型。本文抛开天气因素、生产水平等相关因素,单纯从历史负荷数据出发进行了短期负荷预测算法的讨论。本文引入相似日的概念,通过确定相似度来选取合理的相似日。利用相似日的历史数据通过有效的算法可以计算出预测目的值,本文介绍了线性外推法、变化系数法和加权平均法。最后用一个应用实例说明了以上讨论算法的合理性。  相似文献
6.
基于改进相似日的频域分解短期负荷预测方法,通过对负荷序列进行频域分解,采用外推法、改进相似日法与加权平均法分别对各分量进行预测,将各分量预测结果相加得到最后预测结果,该方法应用于短期负荷预测具有较好的预测精度.  相似文献
7.
支持向量机(support vector machine,SVM)作为一种新颖的机器学习方法已成功应用于短期电力负荷预测,然而应用研究发现SVM算法性能参数的设置将直接影响负荷预测的精度.为此在对SVM参数性能分析的基础上,提出了SCE-UA(shuffled complex evolution-University of Arizona)支持向量机短期电力负荷预测模型建模的思路及关键参数的选取,在建模过程中引入了径向基核函数,简化了非线性问题的求解过程,并应用SCE-UA算法辨识SVM的参数.贵州电网日96点负荷曲线预测的实际算例表明,所提SCE-UA支持向量机模型不仅克服了SVM参数选择的盲目性,而且能提高预测准确率,是一种行之有效的短期电力负荷预测模型.  相似文献
8.
针对短期电力负荷随机性强、预测精度低等问题,文中提出了基于模糊灰色聚类与蝙蝠优化神经网络的短期负荷预测模型。采用模糊聚类方法选择相似日粗集,然后用改进的灰色关联分析法选取相似日;为了克服传统BP算法易陷入局部极值和收敛速度慢等问题,利用相似日集中的样本训练蝙蝠优化的BP神经网络预测模型。以某地区的历史数据为实际算例,将文中所提算法与普通的BP神经网络、传统灰色关联与蝙蝠优化的BP神经网络预测结果相比,结果表明文中所提方法有很高预测精度和稳定性,在实际中有一定应用价值。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号