首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   3篇
  综合类   5篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
通过统计具有图像增强能力的局部区域信息,提出了一种改进的水平集主动轮廓模型.结合非负核函数和具有矫正图像误差特点的灰度集群思想,定义了一种新的符号压力函数(SPF),此函数能够很好处理灰度不均匀、对象边界不明确的问题.并且,引入惩罚项,确保水平集函数的适应性.真实图像和合成图像的实验结果表明,该模型收敛迅速,具有抗噪性,对分割目标图像敏感,能够处理弱边界的多目标图像.  相似文献
2.
提出了一种新的基于曲线演化的活动轮廓图像分割模型.该模型利用局部图像统计信息来代替C-V模型中的全局灰度均值,以此可以分割灰度不均匀的图像.此外,在模型定义的能量泛函中增加了水平集正则项,以此来保证数值计算的准确性和避免对水平集函数的重新初始化.将本文提出的活动轮廓模型用于分割人工和自然图像,比较结果显示:C-V模型不能很好处理灰度不均匀图像,而本文提出的模型对灰度不均匀图像能得到满意的分割效果.  相似文献
3.
张晶 《科技信息》2010,(35):I0218-I0220
针对灰度分布非均匀图像的分割,提出一种改进的基于区域的活动轮廓模型,融合了LIF(local image fitting)模型的变尺度局部拟合特点与C-V(Chan-Vese)模型的全局优化特性,不仅提高了图像的分割效率,而且增强了模型对尺度参数和初始轮廓位置的鲁棒性。在数值计算中,使用高斯滤波规则水平集函数,使其保持光滑,并避免了复杂的重新初始化过程。对大脑MR图像的实验分割显示了该模型的优点。  相似文献
4.
针对CT医学图像灰度不均匀的特点,研究了基于改进的模糊聚类和ChanVese模型的图像分割.该分割模型综合利用基于空间信息的FCM算法、图像局部区域信息以及Chan-Vese模型,通过最小化能量函数的方式来进行曲线演化.基于空间信息的FCM算法对曲线的演化起到了一定的收敛作用,并且局部区域信息提高了分割质量.分割模型还考虑了分割效果和计算效率,降低了算法的时间复杂度,提高了算法的执行效率,从而提高了灰度不均匀图像分割的精度.  相似文献
5.
采用虚拟的符号距离函数代替真实的符号距离函数,依靠待检测目标局部灰度高斯加权均值来驱动活动轮廓的演化,提出了一种能够分割灰度不均匀图像的新颖活动轮廓模型.利用虚拟符号距离函数的梯度形成一个窄带,活动轮廓在窄带内做演化运算,其演化具有计算简单、分割效率高、抗噪性强等优点.符号距离函数重新初始化也只需要在窄带内使用高斯函数规则化后,对其取符号运算即可.符号距离函数重新初始化具有计算简单、效率高的特点.最后给出了活动轮廓在窄带内收敛的一个简单条件,能方便地判断待检测目标是否被检测出来.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号