首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  国内免费   1篇
  完全免费   18篇
  综合类   51篇
  2018年   9篇
  2017年   19篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2011年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
基于非线性修正函数的卷积神经网络图像识别研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了解决深度学习中使用线性修正函数ReLUs对于模型的表达能力欠缺,而柔性光滑函数Softplus无稀疏表达能力的问题。基于ReLUs和Softplus函数各自的优点,将ReLUs函数的稀疏表达能力和Softplus函数的光滑特性结合起来,提出一种使用非线性修正函数作为神经元激励的方法。分析了不同激活函数的性能,并且用卷积神经网络在MNIST和CIFAR-10标准数据库上进行图像分类识别实验,实验结果表明,使用非线性修正激活函数不仅可以加快网络收敛速度,也可以提高识别准确率,同时也不依赖于池化方法的选择。  相似文献
2.
基于深度学习的监控视频树叶遮挡检测   总被引:1,自引:0,他引:1       下载免费PDF全文
结合稀疏自编码器的自动提取数据特征能力和深度置信网络较好的分类性能,提出一种基于深度学习的监控视频树叶遮挡检测方法。首先从视频中随机选取一帧图像,通过栈式稀疏自编码器主动学习视频图像的特征信息,然后采用深度置信网络建立分类检测模型,最后引入学习速率自适应调整策略对整个神经网络进行微调。该方法不需要对视频连续取帧,具有较好的图像特征主动学习能力,克服了人工提取特征能力有限的缺陷。实验结果表明,在样本量充足的条件下,使用本文方法进行监控视频树叶遮挡检测可以达到88.97%的准确率。  相似文献
3.
针对手写汉字中相似汉字的识别问题,构建了一种卷积神经网络(CNN)模型,并给出了其网络拓扑结构,通过随机弹性形变对样本集进行扩展,以提高模型的泛化性能.相似手写汉字的识别实验结果表明:相对于常规的CNN模型,文中CNN模型的手写汉字识别正确率提高1.66%,特别是对于变形的手写汉字,识别正确率提高12.85%;相对于传统的手写汉字识别方法,文中方法的识别错误率降低36.47%,从而验证了文中识别方法的有效性.  相似文献
4.
针对短文本的特点,提出一种基于深层噪音自动编码器的特征提取及聚类算法.该算法利用深度学习网络,将高维、稀疏的短文本空间向量变换到新的低维、本质特征空间.首先在自动编码器的基础上,引入L1范式惩罚项来避免模型过分拟合,然后添加噪音项以提高算法的鲁棒性.实验结果表明,将提取的文本特征应用于短文本聚类,显著提高了聚类的效果,有效地解决了短文本空间向量的高维、稀疏问题.  相似文献
5.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法。首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果。实验结果验证了该算法的有效性。  相似文献
6.
为了给对比散度算法的进一步优化提供理论指导,尝试从理论上分析对比散度算法的收敛性.首先从仅含4个结点的玻尔兹曼机入手,利用单纯形表征模型的概率空间,以及流形表征概率空间与模型参数的关系,形象地表示了对比散度算法和极大似然算法的收敛过程,并从理论上推导出对比散度算法的收敛集与极大似然算法的收敛集之差不为空,从而证明了对比散度算法的有偏性.基于该结论,设计了一种先利用对比散度算法进行预训练,再利用极大似然算法调优的训练策略.实验结果表明,在应用该策略获得同等收敛效果的条件下,训练迭代步骤降低了83.3%.  相似文献
7.
文本的情感倾向在很大程度上依赖于其中情感倾向性较高的关键句,对这些情感关键句正确判定有利于提高整个篇章情感分类的效果。传统的基于规则的情感倾向性分析的优点是情感词表和规则表达准确,缺点是完备性差,而统计的方法则相反。结合使用支持向量机(support vector machine,SVM)与递归神经网络(recursive neural netw ork,RNN)分别构造分类器,然后对整个篇章和单个句子进行情感二元分类,将分类结果进行比较投票后判定出篇章中的情感关键句。句子级情感特征不仅包含情感词、否定词等传统的文法信息,同时加入深度学习领域中词向量的统计信息,而在篇章特征中也抽取出句型、位置等宏观信息。通过参与COAE 2014评测任务1的结果显示,该方法的微平均F1值达到0.388,在同类评测系统中处于最高水平。  相似文献
8.
提出一种基于马尔科夫逻辑网的句子情感分析方法.与深度学习方法相结合实现跨领域的知识迁移,同时采用马尔科夫逻辑网将句子的上下文信息与其它情感特征相结合实现句子情感分析.在COAE评测数据上的实验结果表明,该方法与SVM分类方法相比,准确率达到70.02%,并且在跨领域的情感分析任务中也得到了较好的结果.  相似文献
9.
定义了前馈核神经网络的体系结构。从实际应用的需求出发。所定义的网络涵盖了目前多数前馈神经网络。从理论上证明了该网络的批量学习过程实际上所表达的是一种核学习机,进而证明了网络的学习仅需在最后一层实施即可,而在隐含层的参数可任意赋值。因此,该结论事实上是现有LLM及ELM的拓广。同时,发现在逼近精度要求不是太高的情况下,目前的前馈神经网络学习技术因过于繁琐而没有必要,仅需对网络最后一层进行学习即可。而前馈神经网络技术目前最前沿的应用是解决大样本及深度知识表达问题。针对这两个热点问题,分别提出了大样本下的廉价学习策略和深度知识挖掘下的灵巧学习策略。在此,作者希望该文能引起广泛讨论甚至争论。  相似文献
10.
为改进已有中文文本聚类中数据非结构化导致的算法准确度不高及特征向量高维稀疏导致算法复杂度过高的现状,提出一种基于深度词汇网络学习的中文文本聚类算法,解决了优化数据非结构化带来的聚类结果准确性低及特征向量高维度带来的高复杂度问题。首先建立词汇网络用以抽取关键义原,以词语义原代替单词作为网络节点,不仅避免了语义消歧,同时考虑到词语间语义相似性与词汇相关性,使所提取的特征向量更能表现出文章的主旨,提高聚类效果;另一方面,训练深度学习网络对特征向量降维处理,在降维的同时保留尽可能多的信息,大大减低算法的执行时间。聚类质量检测方法(F-measure)的结果表明,本文算法比k-means算法在中文文本聚类中有更好的表现。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号