首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  国内免费   1篇
  完全免费   13篇
  综合类   44篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   13篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
极限学习机的快速留一交叉验证算法   总被引:3,自引:0,他引:3  
针对回归和分类问题,提出一种极限学习机(Extreme Learning Machine,ELM)的快速留一交叉验证算法,并从理论和数值仿真两方面说明其有效性.结果表明,该算法避免了以训练样本数量N次的ELM模型的显式训练,其计算复杂度与N仅呈线性趋势增长,即O(N).即使在处理大型数据集建模问题时,该算法仍然可以快速地进行ELM模型的选择和评价.通过人工和实际数据集上的仿真实验,验证了该快速留一交叉验证算法的有效性.  相似文献
2.
基于IRLS-ELM生物发酵在线软测量建模方法   总被引:2,自引:0,他引:2  
为解决生物发酵过程中生物量浓度难以在线测量的问题,提出一种基于改进的最小二乘正则化极限学习机(IRLS-ELM)软测量建模方法并将其应用于红霉素发酵过程生物量浓度的在线预测中.根据误差反馈原理,将训练误差作为输入建立带反馈的神经网络,以提高模型预测精度.并将加权最小二乘法引入到ELM中改进其数学模型,削弱离群点或者不稳定因素的影响.最后,将所建IRLS-ELM模型应用于红霉素发酵过程生物量浓度的预测中.实验结果表明,在隐含层节点数相同的情况下,对于指标MSE,IRLS-ELM比ELM和RLS-ELM有明显提高.同时IRLS-ELM在隐含层节点数变少的情况下,误差没有明显变化,结构紧凑而且稳定性较高.由此可见,与ELM和RLS-ELM软测量建模方法相比,IRLS-ELM在线软测量建模方法具有更高的预测精度和更强的泛化能力.  相似文献
3.
基于PSO-ELM的双目视觉摄像机标定   总被引:1,自引:0,他引:1  
针对极限学习机( extreme learning machine,ELM)在隐层节点数较少时标定精度较低的问题,利用粒子群优化算法( particle swarm optimization,PSO)与极限学习机相结合的方法对双目视觉摄像机进行标定。在标定过程中,ELM直接描述图像信息与三维信息之间的非线性关系,然后利用PSO优化ELM的输入权值与隐层阈值。实验结果表明,与ELM相比较,基于粒子群极限学习机( PSO-ELM)的双目视觉摄像机标定方法能仅用较少隐层节点数获得较高精度。  相似文献
4.
基于极限学习的过程神经网络研究及化工应用   总被引:1,自引:0,他引:1  
针对过程神经网络在化工过程建模中学习速度慢、易陷入局部极值等问题,借鉴极限学习机算法训练网络参数的思想,提出了一种新型的基于极限学习的过程神经网络(EL-PNN).ELPNN网络以过程神经网络的方式得到隐含层的输出后,不再使用梯度下降法进行参数调整,而是根据极限学习机算法通过广义逆直接求解输出权值.同时,为了进一步提高网络的泛化性能,考虑结构风险,在EL-PNN网络中加入风险比例参数.以高密度聚乙烯装置进行验证,结果表明,该网络具有学习速度快、建模精度高的特点,为过程神经网络在复杂化工生产中的应用提供了新思路.  相似文献
5.
优化极限学习机的序列最小优化方法   总被引:1,自引:0,他引:1  
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性.  相似文献
6.
ELM岭回归软测量建模方法   总被引:1,自引:1,他引:0  
ELM(极限学习机)是一种新型的前馈神经网络,可有效处理函数的回归问题。针对ELM学习算法隐含层输出可能存在的复共线性问题,提出了ELM岭回归(ELMRR)软测量建模方法。该算法利用岭回归方法代替原有的线性回归算法,以误差平方和均值为性能指标,采用粒子群优化算法确定最佳岭参数,克服了传统岭回归算法最佳岭参数难以确定的缺点。通过具体实例对该算法进行了验证,结果表明该算法是有效可行的。最后采用ELMRR软测量建模方法预测延迟焦化粗汽油干点,获得了满意的结果。与ELM相比,ELMRR建模方法具有较好的预测精度和良好的应用前景。  相似文献
7.
针对海量数据规模下的集中式核函数极限学习机的性能问题,将基于核函数的极限学习机扩展到云计算技术框架下,提出了基于MapReduce的分布式核函数极限学习机MR-KELM.该算法将分布式径向基核函数计算出的核函数矩阵进行分布式矩阵分解,并通过分布式矩阵向量乘法得到分类器输出权重,减小了网络通讯和数据交换代价.实验结果表明,MR-KELM算法能够在不影响基于核函数的极限学习机的计算理论的前提下,具有较好的可扩展性和分类训练性能.  相似文献
8.
为了解决液压系统泄漏、堵塞和气穴等多类型故障下特征提取和模式识别困难的问题,提出基于时频特征和PCA-KELM的液压故障智能诊断新方法。首先利用统计分析和总体平均经验模态分解方法,构造高维混合域初始特征向量,从不同特征指标、不同分析角度对不同种类液压故障进行表征和刻画;然后通过主成分分析对多维初始特征向量进行降维和特征二次提取,将高维相关变量转化为低维独立的主特征向量;最后利用PCA主元构造的主特征向量输入核极限学习机网络中,实现故障类型的识别。实验结果表明,混合域初始特征向量能全面准确地描述故障特征,PCA提取的主特征向量摒弃了冗余信息且简化了分类器结构,KELM网络诊断速度快、分类准确率高。  相似文献
9.
极限学习机是近几年发展起来的一种单隐层前馈神经网络.通过训练多个独立的ELM,V-ELM不仅提高了ELM的分类精度,同时很好地解决了ELM不稳定的特性.在V-ELM中,需要计算一个样本属于每一类的概率,将样本分类为概率最大的那一类.然而,当遇到最大的两个概率相等或者相差不大的情况下,都对应着非常大的误分类概率,为了解决这一问题,在论文中引入了对样本的拒识决策,并将该方法命名为嵌入拒识的投票式极限学习机.  相似文献
10.
针对一类具有空间不均匀性的辨识和回归问题,提出了基于小波分析的极限学习机方法.从多分辨率分析的思想出发,构造一簇紧支撑正交小波作为隐层激活函数,并利用改进的误差最小化极限学习机训练输出层权重,避免了新加入高分辨率子网络后的重新训练.同时,由一维多分辨分析的张量积构造了二维多分辨小波极限学习机.进而通过脊波变换将小波学习机扩展到高维空间,对脊波函数的伸缩、方向和位置参数进行优化计算.对具有奇异性的函数仿真结果证明,与标准极限学习机相比,小波极限学习机由于其聚微性能在极短的训练时间内更好地逼近目标.一些实际基准回归问题上的测试验证了脊波极限学习机在其中大部分问题上达到更高的训练和泛化精度.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号