首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  完全免费   9篇
  综合类   45篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   8篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有45条查询结果,搜索用时 78 毫秒
1.
基于条件随机场的中医命名实体识别   总被引:1,自引:0,他引:1  
中医医案蕴藏着丰富的知识,如何完成对海量医案的自动标注以便对其进行知识挖掘显得尤为重要.针对明清古医案中症状、病机的自动识别标注问题,采用了基于条件随机场(CRF)的方法,提出数据清洗以及缩减合并词性以减少特征空间规模.最后,通过仿真实验将该方法与最大熵、支持向量机这两种统计方法进行对比.结果表明:该方法在针对明清古医案中症状、病机这类中医命名实体识别具有明显的优势.  相似文献
2.
基于条件随机场的中文科研论文信息抽取   总被引:1,自引:1,他引:0  
科研论文头部信息和引文信息对基于域的论文检索、统计和引用分析是必不可少的.由于隐马尔可夫模型不能充分利用对抽取有用的上下文特征,因此文中提出了一种基于条件随机场的中文科研论文头部和引文信息抽取方法,该方法的关键在于模型参数估计和特征选择.实验中采用L-BFGS算法学习模型参数,并选择局部、版面、词典和状态转移4类特征作为模型特征集.在信息抽取时先利用分隔符、特定标识符等格式信息对文本进行分块,在分块基础上用条件随机场进行指定域的抽取.实验表明,该方法抽取性能明显优于基于隐马尔可夫模型的方法,且加入不同的特征集对抽取性能提升作用不同.  相似文献
3.
将分词看成是一个对汉字进行分类的过程,然后利用条件随机场(CRFs)模型对每个汉字进行标记,最后转换为相应的分词结果.在现有CRFs模型的基础上,从字的构词能力角度出发,探索了字位置概率特征,提出了基于字位置概率特征的条件随机场中文分词方法.实验表明,字位置概率特征的引入,使得结果F1值提高了3.5%,达到94.5%.  相似文献
4.
标点符号在现代汉语中扮演着重要的角色,但古代汉语中却不含有任何标点。这使得现代中国人阅读古代文献有严重的困难。该文提出一个基于条件随机场(CRF)的古汉语自动断句标点方法,并引入互信息和t测-试差两个统计量作为模型的特征。分别在《论语》与《史记》两个语料库上进行了充分实验,该方法在《论语》断句处理F 1分数上超出现有方法0.124,在《论语》标点和《史记》断句、标点处理上也取得了满意效果。实验证明:基于条件随机场的方法能较好解决古文自动标点处理问题;层叠条件随机场策略亦优于单层条件随机场策略。  相似文献
5.
针对手机短信的口语化特点,对手机短信中命名实体识别进行了研究.在对手机短信语料研究与分析的基础上,提出了一种针对手机短信口语化语料进行命名实体识别的方法.实验表明,这种方法对手机短信语料中的命名实体具有较好的识别结果.  相似文献
6.
利用自然语言理解技术进行古汉语断句及句读标注的主要挑战是数据稀疏问题.为了解决这一难题,设计了一种六字位标记集,提出了一种基于层叠式条件随机场模型的古文断句与句读标记方法.基于六字位标集,低层模型用观察序列确定句子边界,高层模型同时使用观察序列和低层的句子边界信息进行句读标记.实验在5 M混合古文语料上分别进行了封闭测试和开放测试,封闭测试断句与句读标注的F值分别达到96.48%和91.35%,开放测试断句与句读标注的F值分别达到71.42%和67.67%.  相似文献
7.
提出了一种基于条件随机场的中文自动文摘方法.用条件随机场来建立词性标注模型.在文摘句抽取时,引入了关键词抽取技术抽取文摘句.在生成文摘时,采用了基于规则的方法去除文摘中的冗余信息,使最后生成的文摘更具有可读性.实例表明该方法能够适应于许多领域,得到了很好的应用效果.  相似文献
8.
充分利用人名的外部特征和内部颗粒特征,提出了一种基于条件随机场的中国人名识别方法.通过建立原子模板和复合模板,将局部特征、关联特征、全局特征以及专家知识相融合,基于条件随机场建立了相应的语言模型,极大地提高了人名识别的准确率和召回率.  相似文献
9.
How to integrate heterogeneous semi-structured Web records into relational database is an important and challengeable research topic. An improved model of conditional random fields was presented to combine the learning of labeled samples and unlabeled database records in order to reduce the dependence on tediously hand-labeled training data. The pro- posed model was used to solve the problem of schema matching between data source schema and database schema. Experimental results using a large number of Web pages from diverse domains show the novel approach's effectiveness.  相似文献
10.
条件随机场模型是文本信息抽取的重要方法之一,在命名实体识别方面CRF性能要明显优于隐马尔科夫模型和最大熵模型。本文以基于字一级的条件随机场模型实现了中文命名实体识别,取得了较好的识别效果。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号