首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  完全免费   9篇
  综合类   45篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   8篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有45条查询结果,搜索用时 46 毫秒
1.
基于条件随机场的中文科研论文信息抽取   总被引:1,自引:1,他引:0  
科研论文头部信息和引文信息对基于域的论文检索、统计和引用分析是必不可少的.由于隐马尔可夫模型不能充分利用对抽取有用的上下文特征,因此文中提出了一种基于条件随机场的中文科研论文头部和引文信息抽取方法,该方法的关键在于模型参数估计和特征选择.实验中采用L-BFGS算法学习模型参数,并选择局部、版面、词典和状态转移4类特征作为模型特征集.在信息抽取时先利用分隔符、特定标识符等格式信息对文本进行分块,在分块基础上用条件随机场进行指定域的抽取.实验表明,该方法抽取性能明显优于基于隐马尔可夫模型的方法,且加入不同的特征集对抽取性能提升作用不同.  相似文献
2.
基于条件随机场的中医命名实体识别   总被引:1,自引:0,他引:1  
中医医案蕴藏着丰富的知识,如何完成对海量医案的自动标注以便对其进行知识挖掘显得尤为重要.针对明清古医案中症状、病机的自动识别标注问题,采用了基于条件随机场(CRF)的方法,提出数据清洗以及缩减合并词性以减少特征空间规模.最后,通过仿真实验将该方法与最大熵、支持向量机这两种统计方法进行对比.结果表明:该方法在针对明清古医案中症状、病机这类中医命名实体识别具有明显的优势.  相似文献
3.
How to integrate heterogeneous semi-structured Web records into relational database is an important and challengeable research topic. An improved model of conditional random fields was presented to combine the learning of labeled samples and unlabeled database records in order to reduce the dependence on tediously hand-labeled training data. The pro- posed model was used to solve the problem of schema matching between data source schema and database schema. Experimental results using a large number of Web pages from diverse domains show the novel approach's effectiveness.  相似文献
4.
近年来微博的快速发展为命名体识别提供了新的载体,同时微博的特点也为命名体识别研究带来了挑战.针对微博特点,本文提出了基于拼音相似距离以及文本相似距离聚类算法对微博文本进行规范化,消除了微博的语言表达不规范造成的干扰.同时,本文还提出了篇章级、句子级以及词汇级三级粒度的特征提取,使用条件随机场模型进行训练数据,并识别命名体,采用由微博文本相似聚类获得的实体关系类对命名体类型进行修正.由于缺少大量的微博训练数据,本文采用半监督学习框架训练模型.通过对新浪微博数据的实验结果表明,本方法能够有效地提高微博中命名体识别的效果.  相似文献
5.
Web已经成为人们获取信息的重要来源,但Web上的信息并不都是真实可信的.因此,如何帮助用户快速判断Web上大量信息的可信性成为一个亟待解决的问题.文中提出一种基于内容信任的方法用以验证Web信息的可信程度.采用条件随机场模型进行Web信息的主题提取,利用提取的主题在Web上搜集候选证据,并利用时效性、主题相关度等特征验证候选证据的可靠性,最后进行可信度计算.实验结果表明提出的方法对评价Web信息的内容可信度是有效可行的.  相似文献
6.
针对领域本体构建中概念上下位关系获取难的问题,提出融合句子结构特征的概念上下位语义关系抽取方法。首先利用层叠条件随机场(cascaded conditional random fields, CCRFs)算法建模实现概念上下位实体识别,然后通过对句子结构特征分析得出融合概念上下位关系的句子结构特征,最后利用融入句法特征基于支持向量机(support vector machine,SVM)建模的方法实现概念上下位关系抽取。为验证提出方法的有效性,以旅游领域上下位实体关系抽取为例进行了相关实验。实验结果表明:基于CCRFs模型的识别效果相对于现有的单层模型有较大改进, 其F值提高了6.57%;加入句法特征基于SVM概念上下位关系抽取方法较现有的基于条件随机场(conditional random fields,CRFs)概念上下位关系抽取方法更有效,其F值提高了4.68%。  相似文献
7.
研究针对颅内各组织的MRI图像的新型分割算法.利用支持向量机(support vector machine, SVM)在解决高维及非线性问题的优势和条件随机场(conditional random field, CRF)有效学习数据之间局部依赖关系的优势,将SVM与CRF相结合,提出了多分类的支持向量机条件随机场分割算法(SVM-CRF),并应用于MR图像中各脑组织的分割.实验结果显示,对于较易识别的脑脊液,SVM-CRF算法比SVM算法和CRF算法的分割精度分别提高了1.83%和5.81%;对于较难识别的骨松质,SVM-CRF算法比SVM算法和CRF算法的分割精度分别提高了1.84%和7.60%.理论分析与实验结果表明,SVM-CRF算法的分割精度均明显优于SVM和CRF算法,并且对于较难识别的组织,该算法的优势更能得以体现.  相似文献
8.
利用多资源转化方法进行词性标注研究,旨在将源端资源的标注进行转化,以符合目标端标注规范,进而将转化后的资源与目标资源合并,增大训练数据规模.做了两方面创新:在转化过程中,额外利用指导特征的置信度信息;在转化后的资源中,用模糊标注表示方法减少错误标注.实验表明,利用置信度信息能有效帮助转化,而模糊标注表示方法的影响不大.  相似文献
9.
针对中文医药类网络文本的不规范性引起的药名实体识别性能下降,提出基于层次结构的多策略方法。首先使用条件随机场模型结合改进的最大匹配算法识别药名实体,然后在此基础上对其中的不规范药名实体利用最小编辑距离方法规范化药名实体并扩充药名词典。实验结果表明,改进的最大匹配算法结合统计模型有效地提升了药名实体识别的性能,同时为药名实体规范化扩展提供了新的思路。  相似文献
10.
针对越南语特点,提出一种基于条件随机场模型的越语命名实体识别方法。该方法针对越语词和词性的特点,采用条件随机场算法,选取词和词性作为特征,定义特征模版,选取越南语新闻文本,标记地名、人名、组织机构等6类实体语料,训练获得越南语实体识别模型,实现实体识别。实验结果表明该方法提取实体的准确率达到83.73%。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号