首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  综合类   2篇
  2019年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
蚁群算法是一种优秀的启发式算法,具有较强的鲁棒性。针对基本蚁群算法在求解过程中容易出现收敛时间过长以及容易陷入局部最优的不足。本文提出了一种改进的蚁群算法,该算法通过在信息素挥发系数上增加一个收敛函数,加快了收敛速度;通过信息素增量与优秀路径选择相结合,引导算法收敛到最优路径,实验结果表明,改进后的算法在收敛速度和全局寻优能力上有了较大的提高。  相似文献
2.
研究了智能移动机器人的全局路径规划算法改进问题.结合蚁群算法的全局性与人工势场的确定性优势,提出一种势场蚁群算法.即在基本蚁群算法迭代初期,通过人工势场法影响蚂蚁的信息素量,从而提升寻找最优路径的效率.基于栅格模型,设计了算法的执行步骤.此外,分析了不同的信息素启发因子和信息素挥发系数对算法路径长度、迭代次数和收敛速度的影响.最后仿真验证了该算法优于基本蚁群算法,也得出了信息素启发因子参数选择的合理范围.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号