首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   6篇
  2020年   3篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
气凝胶材料的研究进展   总被引:1,自引:0,他引:1  
气凝胶材料是一种由纳米粒子或聚合物分子链组成的具备三维纳米结构的多孔材料,具有低密度、高孔隙率、高孔体积和高比表面积等结构特点,显现出优异的光、热、声、电和力学等特性,在航空航天、石油化工、环境保护、建筑保温、能量储存与转化等领域具有广泛的应用价值。迄今为止,气凝胶的种类已由最初的SiO_2气凝胶发展到了具有特定功能的各类新型气凝胶,从而有效拓宽了气凝胶的应用范围。气凝胶材料通常采用溶胶-凝胶、老化、溶剂置换并结合超临界干燥、冷冻干燥或常压干燥等过程制备。气凝胶材料按照组成可以分为单组分气凝胶和多组分气凝胶,其中单组分气凝胶主要包括氧化物气凝胶、碳化物气凝胶、氮化物气凝胶、石墨烯气凝胶(GA)、量子点气凝胶、聚合物基有机气凝胶、生物质基有机及C气凝胶和其他种类气凝胶,而多组分气凝胶由两种及以上单组分气凝胶构成或者由纤维、晶须、纳米管等作为增强体所形成的气凝胶复合材料。本文主要介绍各类单组分及其复合气凝胶材料的制备方法及其在隔热、吸附、催化、储能转化和生物医用等领域的应用,对近年来气凝胶在制备及应用方面所取得的突破性进展进行了综述。同时也指出在基础研究方面亟需通过理论计算和实验研究相结合,实现气凝胶网络结构生长调控、表面组成及化学结构调控和高温组织结构稳定性调控;在功能型气凝胶材料开发方面,通过反应机制深入研究气凝胶材料结构和性能关联,实现高性能的多功能型气凝胶材料突破性进展;在规模化应用方面,寻找成本低廉的前驱体原料和降低气凝胶干燥成本是气凝胶产业化进程长远发展的关键。  相似文献   
2.
对一类具有数值界不确定性的关联时滞大系统,应用线性矩阵不等式(LMI)方法研究使其分散稳定化的鲁棒控制器设计问题.通过引入一种线性状态变换,分离出时滞依赖因子.在此基础上给出其存在分散鲁棒稳定化控制器的充分条件.  相似文献   
3.
根据上海市区道路行驶循环确定电动机的功率和扭矩性能要求,用满足车辆行驶的加速性能、最高车速和纯电动行驶性能等要求的方法来修正,初步确定了电机的性能参数,为混合动力汽车动力系统的优化设计提供了依据。  相似文献   
4.
研究了一类不确定广义时滞系统的鲁棒无源控制器设计问题.首先给出了不确定广义时滞系统鲁棒稳定且严格无源的充分条件,在此基础上给出了带时滞的状态反馈控制器存在的充分条件,保证了闭环系统鲁棒稳定且严格无源,并且利用线性矩阵不等式(LMI)的解设计相应的控制器,数值例子说明该结论的有效性.  相似文献   
5.
以尿素为氮源,通过溶胶-凝胶法并结合超临界干燥、惰性氛围碳化、碳热还原和空气除碳等工艺制备块状氮化硅(Si_3N_4)气凝胶。通过不同温度热处理,研究Si_3N_4气凝胶的形成过程及机制。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X线光电子能谱仪(XPS)、N_2吸附-脱附仪分析材料的相组成、微观结构和孔结构等。结果表明:当热处理温度为1 500℃时,体系中以Si_3N_4相为主,继续升高热处理温度至1 600℃时,Si_3N_4相转化为SiC相。Si_3N_4气凝胶中Si_3N_4相和SiO_2相分别占74.4%和25.6%。Si_3N_4气凝胶以Si_3N_4纳米颗粒的形式存在,其粒径为20~40 nm,孔径为20~40 nm,比表面积高达519.58 m~2/g。Si_3N_4气凝胶的室温热导率为0.045 W/(m·K),其形成机制是基于C、SiO_2和N_2之间的气-固(VS)生长。  相似文献   
6.
以聚乙二醇(PEG)为相变材料,石墨烯气凝胶(GA)为基体,分别采用水热法和热熔渗法两种方法制备PEG/GA相变复合材料。利用X线衍射仪(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FT-IR)、热重-差示扫描量热仪(TG-DSC)等对相变复合材料的微观结构、化学组成和热物性参数进行表征,同时采用液相泄漏和表面温度测试实验表征材料的防泄漏和隔热性能。结果表明:水热法的最优水热反应温度为180℃,而最优反应时间为12 h,PEG与GA为物理混合且复合良好,无高温液相泄漏发生,相变复合材料的熔化焓为139.4 J/g,结晶焓为175.7 J/g,而50次热循环后的熔化焓降低到139.4 J/g,结晶焓减小到149.0 J/g。热熔渗法中最优热熔渗温度为90℃,而最优浸渍时间为45 min,PEG与GA为物理混合且PEG分子链以特定方向排布于石墨烯片层中间,同时该复合材料也无液相泄漏发生,相变复合材料的熔化焓为205.2 J/g,结晶焓为223.4 J/g,而50次热循环后相变焓基本没有变化,热熔渗法PEG/GA相变复合材料具有更优异的结构和性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号