首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
针对中医脉象模糊性强、种类繁多、特征复杂的特点,以及传统模糊聚类方法、BP神经网络识别方法的不足,提出了一种基于极限学习机(extreme learning machine,ELM)的脉象识别方法.该方法通过提取脉象信号的特征向量,然后利用ELM对特征向量进行了训练和分类.实验结果表明,本文所提出的脉象识别方法与传统模糊聚类方法、BP神经网络方法和支持向量机方法相比,识别正确率分别提高21%,9%和5%.这表明所提出的方法对脉象的分类判别能取得良好的效果.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号