首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   9篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
本文简要地介绍了假塑性流体搅拌轴功率的计算方法,计算平均剪切速率时所需比例系数k值及其计算式和实验测定方法。我们对锚式搅拌桨在假塑性流体中的搅拌轴功率消耗正在进行研究测定,其结果将作为本文的续篇。  相似文献   
2.
在直径为 0.476m的间歇操作的搅拌釜中,用隔盘、环板将搅拌釜隔为两级,利用酸碱中和法测定水及甘油 (粘度分别为 0.072、0.111、0.522Pa·s)体系的混匀时间,并比较了粘度不同的物系对搅拌釜内级间轴向返混特性。结果表明:相同搅拌转速下,物料粘度增加,搅拌釜内级间返混减小;但搅拌雷诺数相同时,物料粘度变化对多级连续搅拌釜内级间的返混程度没有影响。此规律对多级搅拌釜的工业设计具有重要的指导意义。  相似文献   
3.
斜叶涡轮搅拌槽流动场数值研究   总被引:11,自引:0,他引:11  
利用kε湍流模型模拟了斜四叶涡轮搅拌槽内不同条件下宏观流动场, 研究了搅拌桨与搅拌槽直径比( D/ DT) 、桨叶离槽底距离(C) 对搅拌槽内宏观流动场的影响。数值模拟结果表明, 桨叶离槽底距离与槽径之比较小( C/ DT=0-33)时, 叶轮区域轴向流动较强, 在整个rz 断面形成一个整体循环。随着桨叶离槽底距离增加, 叶轮区径向流动增强, 当C/ DT= 0-5 时, 在搅拌桨下方区域形成二次循环区。搅拌桨与搅拌槽直径比较小时( D/DT= 0-33) , 挡板前后宏观流动场差别很大, 在挡板后面区域, 流体在桨叶安装位置高度附近转向轴心流动, 槽体上半部区域形成二次循环区域, 且二次循环区域内流体以向上流动为主。  相似文献   
4.
多级搅拌槽内流动特性实验及模型研究   总被引:1,自引:0,他引:1  
利用隔盘、环板等内构件将搅拌槽内分为四级,采用饱和KCl溶液作示踪剂,利用特制的电导率仪微机系统进行动态数据采集,测定了不同的操作参数和内构件尺寸对停留时间分布(RTD)的影响,分析了影响返混的主要因素。环板与槽壁的间隙、隔盘外径与环板内径的影响较强,盘、板间距的影响相对较弱。利用MonteCarlo方法(MCM)对系统的停留时间分布进行了数值模拟计算。  相似文献   
5.
通过实验,讨论了假塑性流体搅拌轴功率计算中,锚式搅拌设备的几何尺寸以及流体流变特性的影响,对平均剪切速率与搅拌转数间的比例系数k提出了计算关联式。  相似文献   
6.
准确地计算搅拌器的功率消耗,对搅拌釜的系列化以及电机、减速器等机电设备的合理选用是很重要的。目前,关于锚式搅拌器轴功率的计算方法,国内研究甚少,国外虽有不少这方面的关联式,但适用范围较窄,而且缺乏现场的校核。为此,我们在完成平板式桨叶搅拌器功率测试以后,对锚式搅拌器的轴功率进行了研究。  相似文献   
7.
RNG k-ε模型在耗散率方程中通过系数C*1引入描述流场畸变效应的附加源项后,在一定程度上会改善对旋转流、浮力流等较复杂湍流的预报能力.本文应用该模型对六直叶涡轮搅拌桨的三维流动场进行了数值模拟,并将计算结果与实验数据进行了比较.计算结果表明:RNG k-ε模型对桨叶附近速度场的预报较k-ε模型有一定程度改善,但对湍流动能的预报却要比k-ε模型差.若要进一步改进对桨叶附近流动场的预报,必须放弃基于各向同性假设的湍流模型,转而采用能够反映各向异性的模型或采用先进的计算方法.  相似文献   
8.
搅拌槽内三维流动场的RNGκ—ε数值模拟   总被引:1,自引:0,他引:1  
RNGκ-ε模型在耗散率方程中通过系C1^*引入描述流场畸变效应的附加源项后,在一定程度上会改善对旋转流,浮力流等较复杂湍流的预报能力。本文应用该模型对六直叶涡轮搅拌桨的三维流动场进行了数值模拟,并将计算结果与实验数据进行了比较。计算结果表明:RNGκ-ε模型对桨叶附近速度场的预报较κ-ε模型有一定程度改善,但对湍流动能的预报却要比κ-ε模型差。若要进一步改装对桨叶附近流动场的预报,必须放弃基于各向同性假设的湍流模型,转而采用能够反映各向异性的模型或采用先进的计算方法。  相似文献   
9.
搅拌槽内非牛顿流体流动场的数值模拟   总被引:1,自引:0,他引:1  
对搅拌槽内非牛顿流体湍流流动的数值研究还很缺乏.文中尝试利用k-ε模型计算了假塑性流体羧甲基纤维素钠(CMC)水溶液在搅拌槽内的三维流动场,并与粒子成像测速(PIV)法测得的实验结果进行了比较.计算结果表明,非牛顿流体CMC水溶液的宏观流动场与牛顿流体(水)的流动场有较大差异,主要是主体流动减弱,并在叶端附近形成涡旋流动.主体流动区内的速度分布与PIV测量结果吻合较好.剪切速率在槽内的分布相差较大,桨叶附近与槽壁处的剪切速率较大,在主体流动区域较小.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号