首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
综合类   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Ni因其价格低廉和对环境友好,被视为具有发展潜力的超级电容器电极材料之一;且它与其他电极材料复合可以有效阻止团聚反应的发生,能大大改善材料的电化学性能。近年来Ni的(氢)氧化物与碳材料、聚合物等复合制备新的电极材料已经成为储能领域研究的热点。介绍了Ni的化合物作为电极材料储能的机制以及在复合电极材料中的应用,综述了近年来国内外报道的各类镍基复合电极材料的研究进展,并对其今后的发展趋势进行了展望。  相似文献   
2.
近年来,锂离子电池被广泛地应用于便携式电子设备和手机,并且对于诸如电动汽车等更高要求的应用而言具有巨大的潜力。作为锂离子电池负极材料,Fe2O3是最有可能替代石墨的过渡金属氧化物之一。因其具有高的理论比容量(1 007 mA·h·g-1)、储量丰富、安全性能好、无毒、环境友好和成本低等一系列优点,被广泛应用于气体传感器、催化和锂离子电池电极材料等领域,是一种具有巨大潜力的电极材料。介绍了锂离子电池的基本结构组成和工作原理,综述了Fe2O3的储锂机制和制备方法,总结了近年来Fe2O3以及它的复合物作为锂离子电池负极材料的研究进展。  相似文献   
3.
磷酸铁锂正极材料具有比容量大、安全性高、性价比高以及循环寿命长等优点,被认为是最具应用前景的锂离子电池正极材料之一。论述了橄榄石型磷酸铁锂的晶体结构特征以及充放电反应机制,综述了近年来采用葡萄糖、活性碳和石墨烯等不同的碳源进行碳包覆, 硫离子、镁离子、镍离子、氟离子、钒离子、钠离子和银离子等不同金属离子和非金属离子进行离子掺杂以及蒸发诱导自组装法、碳热还原法和喷雾干燥法等不同合成方法进行材料纳米化等改性方式对锂离子电池磷酸铁锂正极材料的影响。最后简要分析了目前改性方法仍存在的问题,并对其前景进行了展望。  相似文献   
4.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫。在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注。对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料。最后分析了石墨烯基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   
5.
Na离子电池由于其低成本和丰富的Na资源储备,已成为电能存储和低速电动汽车中最有前途的候选设备。正极材料是Na离子电池的关键,对电化学性能具有显著影响。系统地总结了现有的Na离子电池正极材料,有过渡金属氧化物类、聚阴离子类、普鲁士蓝类和有机分子聚合物类等材料。目前,这些正极材料存在两个缺点:Na离子的半径比Li离子的大,在离子脱嵌过程中会对材料的结构造成严重影响,进而导致体积膨胀和容量衰减;动态过程缓慢,导致充放电倍率表现不佳。总结了用以提高正极材料电化学性能的掺杂/替代和涂覆等改性方法,为以后的Na离子电池改性和正极材料的选择提供了研究方向。  相似文献   
6.
对锂离子电池中硅/碳负极材料的纳米结构、掺杂改性以及三元复合等制备工艺及其电化学性能、相关机理进行了总结。通过研究不同改性方法对硅/碳负极材料电化学性能的影响,以找到较为优异的改性路径。经过对比发现,通过采用纳米结构、原子掺杂以及三元复合的方法均可显著提升硅/碳负极材料的电化学性能。最后对硅/碳负极材料发展现状进行了简要分析,并对其研究前景进行了展望。  相似文献   
7.
近年来,随着人们对能量需求的日益增大,已商业化应用的石墨电极已经很难满足高性能电子产品对高能量密度的需求,因此发展高能量密度的锂离子电池显得尤为重要。在已研究的先进材料中,硅已被证明存在巨大的储能潜力,其理论比容量(约4 200 mA·h·g-1)远高于已商业化应用的石墨类电极材料。对锂离子电池中硅电极材料的微纳结构、制备方法、电化学性能及相关机理进行了总结,目的是研究不同结构的硅电极材料对电池性能的影响,以找到性能较为优异的硅电极结构。结果表明,在已被研究的硅基复合材料中,核壳结构和多壁纳米管结构硅电极材料在电化学性能方面均体现出了明显的优势。最后简要分析了硅基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   
8.
由于以碳为负极材料的锂离子电池(LIBs)已很难满足高性能电子产品对高能量密度的需求,因此研究新的锂离子电池负极材料成为近年来主要的研究方向。在金属氧化物中,二氧化锡(SnO_2)以其较高的理论比容量(782 mAh/g)引起了广泛的关注。首先概述了SnO_2的不同形貌如纳米颗粒、纳米棒、纳米片、纳米微球等在锂离子电池方面的特性;然后阐述了通过掺杂或修饰改善其结构及电化学性能;最后展望了SnO_2基负极材料的纳米结构设计与改进在锂离子电池领域面临的挑战。  相似文献   
9.
研究了Ti-(22, 24, 26, 28)Nb-2Fe-4Sn合金的显微组织和力学性能。使用真空非自耗电弧熔炼炉制备合金铸锭,均匀化处理后对合金铸锭进行冷轧和固溶处理。使用X射线衍射仪和光学显微镜对其物相和微观组织进行分析。通过拉伸试验测定了合金的力学性能,使用扫描电子显微镜观察了拉伸样品断口形貌。结果表明,Ti-(22, 24, 26, 28)Nb-2Fe-4Sn合金具有单一β相。Nb的加入使合金的β相稳定性提高,合金的变形机制由孪晶变形转变为位错滑移变形,孪晶诱导塑性变形使得合金具有较高的伸长率。所有合金拉伸断口呈韧性断裂特征。Ti-26Nb-2Fe-4Sn合金的弹性模量为59 GPa,伸长率为19%,抗拉强度为621 MPa,具有良好的生物医学应用前景。  相似文献   
10.
锂硫电池因其高比容量、高能量密度和低成本等特点已被视为超越锂离子电池的下一代可充电电池。由于反应产物可溶性多硫化物的穿梭效应和循环中硫电极的体积膨胀导致电池的循环寿命较差。为了解决锂硫电池中存在的问题,研究人员开发了多种纳米结构的金属材料。总结了利用钛元素和钛基化合物(包括钛基氧化物、钛基硫化物和钛基氮化物)与硫的反应形成牢固化学键,通过金属基复合材料的结构设计来提升锂硫电池的综合性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号