首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2929篇
  免费   17篇
  国内免费   4篇
系统科学   46篇
理论与方法论   55篇
现状及发展   1735篇
研究方法   223篇
综合类   831篇
自然研究   60篇
  2020年   14篇
  2018年   50篇
  2017年   38篇
  2016年   47篇
  2015年   32篇
  2014年   39篇
  2013年   38篇
  2012年   112篇
  2011年   164篇
  2010年   63篇
  2009年   23篇
  2008年   100篇
  2007年   86篇
  2006年   104篇
  2005年   103篇
  2004年   93篇
  2003年   79篇
  2002年   75篇
  2001年   49篇
  2000年   35篇
  1999年   33篇
  1992年   24篇
  1991年   21篇
  1990年   28篇
  1989年   16篇
  1988年   14篇
  1987年   30篇
  1986年   18篇
  1985年   26篇
  1984年   27篇
  1982年   29篇
  1981年   18篇
  1980年   31篇
  1979年   83篇
  1978年   69篇
  1977年   91篇
  1976年   21篇
  1975年   37篇
  1974年   95篇
  1973年   81篇
  1972年   102篇
  1971年   72篇
  1970年   88篇
  1969年   94篇
  1968年   68篇
  1967年   91篇
  1966年   76篇
  1965年   57篇
  1964年   16篇
  1960年   11篇
排序方式: 共有2950条查询结果,搜索用时 15 毫秒
41.
42.
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.  相似文献   
43.
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.  相似文献   
44.
45.
46.
47.
48.
Common fragile sites (CFSs) are large chromosomal regions long identified by conventional cytogenetics as sequences prone to breakage in cells subjected to replication stress. The interest in CFSs came from their key role in the formation of DNA damage, resulting in chromosomal rearrangements. The instability of CFSs was notably correlated with the appearance of genome instability in precancerous lesions and during tumor progression. Identification of the molecular mechanisms responsible for their instability therefore represents a major challenge. A number of data show that breaks result from mitotic entry before replication completion but the mechanisms responsible for such delayed replication of CFSs and relaxed checkpoint surveillance are still debated. In addition, clues to the molecular events leading to breakage just start to emerge. We present here the results of recent reports addressing these questions.  相似文献   
49.
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.  相似文献   
50.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号