首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
系统科学   1篇
综合类   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
一种排异竞争的粒子群优化算法   总被引:1,自引:0,他引:1  
谭阳  唐德权  全惠云 《系统仿真学报》2011,23(12):2635-2640,2646
提出一种基于排异竞争机制的粒子群优化算法。算法取消传统PSO算法中的全局最优值"gbest",通过设定竞争区域,使得当前种群中所有粒子和上一代种群中的精英粒子,一同参与竞争。并采取适应值竞争策略、适应度选择策略和粒子间的排异策略,来保证种群的多样性,避免了算法初期陷入局部极值的可能;并通过对排异策略的动态调整,提高了算法后期的收敛速度和精度。通过对几类典型函数的仿真测试表明,算法具有较好的全局搜索能力和收敛速度。  相似文献   
2.
基于Cholesky分解的LSSVM在线学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对最小二乘支持向量机(LSSVM)用于在线建模时存在的计算复杂性问题,提出一种LSSVM在线学习算法.首先引入了基于Cholesky分解求LSSVM的方法,接着根据在线建模期间核函数矩阵的更新特点,将分块矩阵Cholesky分解用于LSSVM的在线求解,使三角因子矩阵在线更新从而得出一种新的LSSVM在线学习算法.该算法能充分利用历史训练结果,减少计算量.仿真实验显示了这种在线学习算法的有效性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号