首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
现状及发展   20篇
研究方法   17篇
综合类   37篇
自然研究   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   7篇
  2011年   12篇
  2010年   2篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1992年   1篇
  1991年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有77条查询结果,搜索用时 765 毫秒
71.
Aubret F  Shine R  Bonnet X 《Nature》2004,431(7006):261-262
The morphology of organisms is generally well matched to their environment, presumably because expression of their genes is tailored either at the population or the individual level to suit local conditions: for example, snake populations that persistently encounter large prey may accumulate gene mutations that specify a large head size, or head growth may be increased in individual snakes to meet local demands (adaptive developmental plasticity). Here we test the relative contributions of genetics and environment to the jaw sizes of two tiger snake populations: one that consumes small prey on the mainland, and an island population that relies on larger prey and has a larger jaw size. Although the idea of adaptive plasticity in response to environmental pressures is controversial, we find that both factors influence the difference in jaw size between the two populations, and the influence of developmental plasticity is greater in the island population.  相似文献   
72.
73.
74.
Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.  相似文献   
75.
76.
Numerous types of DNA variation exist, ranging from SNPs to larger structural alterations such as copy number variants (CNVs) and inversions. Alignment of DNA sequence from different sources has been used to identify SNPs and intermediate-sized variants (ISVs). However, only a small proportion of total heterogeneity is characterized, and little is known of the characteristics of most smaller-sized (<50 kb) variants. Here we show that genome assembly comparison is a robust approach for identification of all classes of genetic variation. Through comparison of two human assemblies (Celera's R27c compilation and the Build 35 reference sequence), we identified megabases of sequence (in the form of 13,534 putative non-SNP events) that were absent, inverted or polymorphic in one assembly. Database comparison and laboratory experimentation further demonstrated overlap or validation for 240 variable regions and confirmed >1.5 million SNPs. Some differences were simple insertions and deletions, but in regions containing CNVs, segmental duplication and repetitive DNA, they were more complex. Our results uncover substantial undescribed variation in humans, highlighting the need for comprehensive annotation strategies to fully interpret genome scanning and personalized sequencing projects.  相似文献   
77.
Alcohol is an important risk factor for upper aerodigestive cancers and is principally metabolized by alcohol dehydrogenase (ADH) enzymes. We have investigated six ADH genetic variants in over 3,800 aerodigestive cancer cases and 5,200 controls from three individual studies. Gene variants rs1229984 (ADH1B) and rs1573496 (ADH7) were significantly protective against aerodigestive cancer in each individual study and overall (P = 10(-10) and 10(-9), respectively). These effects became more apparent with increasing alcohol consumption (P for trend = 0.0002 and 0.065, respectively). Both gene effects were independent of each other, implying that multiple ADH genes may be involved in upper aerodigestive cancer etiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号