首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5447篇
  免费   16篇
  国内免费   32篇
系统科学   31篇
丛书文集   57篇
教育与普及   4篇
理论与方法论   27篇
现状及发展   2704篇
研究方法   266篇
综合类   2332篇
自然研究   74篇
  2017年   37篇
  2012年   82篇
  2011年   157篇
  2008年   113篇
  2007年   138篇
  2006年   118篇
  2005年   110篇
  2004年   114篇
  2003年   97篇
  2002年   116篇
  2001年   156篇
  2000年   173篇
  1999年   104篇
  1992年   92篇
  1991年   71篇
  1990年   70篇
  1989年   64篇
  1988年   51篇
  1987年   70篇
  1986年   69篇
  1985年   127篇
  1984年   77篇
  1983年   70篇
  1982年   62篇
  1981年   63篇
  1980年   73篇
  1979年   137篇
  1978年   129篇
  1977年   137篇
  1976年   125篇
  1975年   138篇
  1974年   147篇
  1973年   113篇
  1972年   104篇
  1971年   152篇
  1970年   231篇
  1969年   157篇
  1968年   138篇
  1967年   163篇
  1966年   125篇
  1965年   84篇
  1964年   50篇
  1962年   38篇
  1959年   70篇
  1958年   86篇
  1957年   81篇
  1956年   55篇
  1955年   48篇
  1954年   54篇
  1948年   42篇
排序方式: 共有5495条查询结果,搜索用时 31 毫秒
81.
Sergina NV  Rausch M  Wang D  Blair J  Hann B  Shokat KM  Moasser MM 《Nature》2007,445(7126):437-441
Oncogenic tyrosine kinases have proved to be promising targets for the development of highly effective anticancer drugs. However, tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (HER) family show only limited activity against HER2-driven breast cancers, despite effective inhibition of epidermal growth factor receptor (EGFR) and HER2 in vivo. The reasons for this are unclear. Signalling in trans is a key feature of this multimember family and the critically important phosphatidylinositol-3-OH kinase (PI(3)K)/Akt pathway is driven predominantly through transphosphorylation of the kinase-inactive HER3 (refs 9, 10). Here we show that HER3 and consequently PI(3)K/Akt signalling evade inhibition by current HER-family TKIs in vitro and in tumours in vivo. This is due to a compensatory shift in the HER3 phosphorylation-dephosphorylation equilibrium, driven by increased membrane HER3 expression driving the phosphorylation reaction and by reduced HER3 phosphatase activity impeding the dephosphorylation reaction. These compensatory changes are driven by Akt-mediated negative-feedback signalling. Although HER3 is not a direct target of TKIs, HER3 substrate resistance undermines their efficacy and has thus far gone undetected. The experimental abrogation of HER3 resistance by small interfering RNA knockdown restores potent pro-apoptotic activity to otherwise cytostatic HER TKIs, re-affirming the oncogene-addicted nature of HER2-driven tumours and the therapeutic promise of this oncoprotein target. However, because HER3 signalling is buffered against an incomplete inhibition of HER2 kinase, much more potent TKIs or combination strategies are required to silence oncogenic HER2 signalling effectively. The biologic marker with which to assess the efficacy of HER TKIs should be the transphosphorylation of HER3 rather than autophosphorylation.  相似文献   
82.
The scale-free and small-world properties are studied in detail for the complex earthquake networks constructed from the seismic data sets taken from California (USA), Japan, Iran and Chile. It is found that, in all these geographical regions, both the exponent / of the power-law connectivity distribution and the clustering coefficient C take the universal invariant values /≈1 and C≈0.85, respectively, as the cell size, which is the scale of coarse graining needed for construction of network, becomes larger than a certain value. A possible physical interpretation is given to the emergence of such remarkable invariance.  相似文献   
83.
Genome sequence and analysis of the tuber crop potato   总被引:11,自引:0,他引:11  
Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.  相似文献   
84.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
85.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.  相似文献   
86.
Centromere-binding protein B (CENP-B) is a widely conserved DNA binding factor associated with heterochromatin and centromeric satellite repeats. In fission yeast, CENP-B homologues have been shown to silence long terminal repeat (LTR) retrotransposons by recruiting histone deacetylases. However, CENP-B factors also have unexplained roles in DNA replication. Here we show that a molecular function of CENP-B is to promote replication-fork progression through the LTR. Mutants have increased genomic instability caused by replication-fork blockage that depends on the DNA binding factor switch-activating protein 1 (Sap1), which is directly recruited by the LTR. The loss of Sap1-dependent barrier activity allows the unhindered progression of the replication fork, but results in rearrangements deleterious to the retrotransposon. We conclude that retrotransposons influence replication polarity through recruitment of Sap1 and transposition near replication-fork blocks, whereas CENP-B counteracts this activity and promotes fork stability. Our results may account for the role of LTR in fragile sites, and for the association of CENP-B with pericentromeric heterochromatin and tandem satellite repeats.  相似文献   
87.
Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.  相似文献   
88.
89.
90.
Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging. Here we show that Vernier complexes can solve this problem: if the number of binding sites on the template, n(T), is not a multiple of the number of binding sites on the molecular building blocks, n(B), then small templates can direct the assembly of relatively large Vernier complexes where the number of binding sites in the product, n(P), is the lowest common multiple of n(B) and n(T) (refs 8, 9). We illustrate the value of this concept for the covalent synthesis of challenging targets by using a simple six-site template to direct the synthesis of a 12-porphyrin nano-ring with a diameter of 4.7?nm, thus establishing Vernier templating as a powerful new strategy for the synthesis of large monodisperse macromolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号