首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   3篇
  国内免费   9篇
系统科学   6篇
教育与普及   1篇
理论与方法论   8篇
现状及发展   87篇
研究方法   62篇
综合类   288篇
自然研究   4篇
  2021年   7篇
  2019年   2篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   4篇
  2013年   8篇
  2012年   40篇
  2011年   59篇
  2010年   18篇
  2009年   3篇
  2008年   34篇
  2007年   40篇
  2006年   28篇
  2005年   35篇
  2004年   21篇
  2003年   21篇
  2002年   21篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1990年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1966年   3篇
  1964年   2篇
  1962年   1篇
  1957年   1篇
  1945年   1篇
排序方式: 共有456条查询结果,搜索用时 93 毫秒
71.
Shackleton crater is nearly coincident with the Moon's south pole. Its interior receives almost no direct sunlight and is a perennial cold trap, making Shackleton a promising candidate location in which to seek sequestered volatiles. However, previous orbital and Earth-based radar mapping and orbital optical imaging have yielded conflicting interpretations about the existence of volatiles. Here we present observations from the Lunar Orbiter Laser Altimeter on board the Lunar Reconnaissance Orbiter, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting that little floor deposition has occurred since the crater formed more than three billion years ago. At a wavelength of 1,064 nanometres, the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explicable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a one-micrometre-thick layer containing about 20 per cent surficial ice is an alternative possibility.  相似文献   
72.
Effective targeted cancer therapeutic development depends upon distinguishing disease-associated 'driver' mutations, which have causative roles in malignancy pathogenesis, from 'passenger' mutations, which are dispensable for cancer initiation and maintenance. Translational studies of clinically active targeted therapeutics can definitively discriminate driver from passenger lesions and provide valuable insights into human cancer biology. Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukaemia (AML) patients and are associated with a poor prognosis. Abundant scientific and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggests that FLT3-ITD probably represents a passenger lesion. Here we report point mutations at three residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT, PDGFRA, PDGFRB and RET; evolution of AC220-resistant substitutions at two of these amino acid positions was observed in eight of eight FLT3-ITD-positive AML patients with acquired resistance to AC220. Our findings demonstrate that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. AC220-resistant FLT3 kinase domain mutants represent high-value targets for future FLT3 inhibitor development efforts.  相似文献   
73.
Ciruna B  Jenny A  Lee D  Mlodzik M  Schier AF 《Nature》2006,439(7073):220-224
Environmental and genetic aberrations lead to neural tube closure defects (NTDs) in 1 out of every 1,000 births. Mouse and frog models for these birth defects have indicated that Van Gogh-like 2 (Vangl2, also known as Strabismus) and other components of planar cell polarity (PCP) signalling might control neurulation by promoting the convergence of neural progenitors to the midline. Here we show a novel role for PCP signalling during neurulation in zebrafish. We demonstrate that non-canonical Wnt/PCP signalling polarizes neural progenitors along the anteroposterior axis. This polarity is transiently lost during cell division in the neural keel but is re-established as daughter cells reintegrate into the neuroepithelium. Loss of zebrafish Vangl2 (in trilobite mutants) abolishes the polarization of neural keel cells, disrupts re-intercalation of daughter cells into the neuroepithelium, and results in ectopic neural progenitor accumulations and NTDs. Remarkably, blocking cell division leads to rescue of trilobite neural tube morphogenesis despite persistent defects in convergence and extension. These results reveal a function for PCP signalling in coupling cell division and morphogenesis at neurulation and indicate a previously unrecognized mechanism that might underlie NTDs.  相似文献   
74.
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of “inert” macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid–liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).  相似文献   
75.
76.
An individual magnetic atom doped into a semiconductor is a promising building block for bottom-up spintronic devices and quantum logic gates. Moreover, it provides a perfect model system for the atomic-scale investigation of fundamental effects such as magnetism in dilute magnetic semiconductors. However, dopants in semiconductors so far have not been studied by magnetically sensitive techniques with atomic resolution that correlate the atomic structure with the dopant's magnetism. Here we show electrical excitation and read-out of a spin associated with a single magnetic dopant in a semiconductor host. We use spin-resolved scanning tunnelling spectroscopy to measure the spin excitations and the magnetization curve of individual iron surface-dopants embedded within a two-dimensional electron gas confined to an indium antimonide (110) surface. The dopants act like isolated quantum spins the states of which are governed by a substantial magnetic anisotropy that forces the spin to lie in the surface plane. This result is corroborated by our first principles calculations. The demonstrated methodology opens new routes for the investigation of sample systems that are more widely studied in the field of spintronics-that is, Mn in GaAs (ref. 5), magnetic ions in semiconductor quantum dots, nitrogen-vacancy centres in diamond and phosphorus spins in silicon.  相似文献   
77.
Functional connectivity in the retina at the resolution of photoreceptors   总被引:2,自引:0,他引:2  
To understand a neural circuit requires knowledge of its connectivity. Here we report measurements of functional connectivity between the input and ouput layers of the macaque retina at single-cell resolution and the implications of these for colour vision. Multi-electrode technology was used to record simultaneously from complete populations of the retinal ganglion cell types (midget, parasol and small bistratified) that transmit high-resolution visual signals to the brain. Fine-grained visual stimulation was used to identify the location, type and strength of the functional input of each cone photoreceptor to each ganglion cell. The populations of ON and OFF midget and parasol cells each sampled the complete population of long- and middle-wavelength-sensitive cones. However, only OFF midget cells frequently received strong input from short-wavelength-sensitive cones. ON and OFF midget cells showed a small non-random tendency to selectively sample from either long- or middle-wavelength-sensitive cones to a degree not explained by clumping in the cone mosaic. These measurements reveal computations in a neural circuit at the elementary resolution of individual neurons.  相似文献   
78.
通过对汶川地震驱动的通口河流域同震崩塌、滑坡等地质灾害的野外实地考察和遥感影像分析,获得通口河流域同震及震后地质灾害的空间分布情况,结合对通口河流域构造、地貌和气候等因素的分析,获得以下认识:(1)构造因素(汶川地震)是导致通口河流域同震地质灾害的根本原因;(2)地貌因素为同震及震后地质灾害的发生提供了重要的环境条件;(3)以降雨为主的气候因素是导致震后通口河流域地质灾害发生的直接诱发因素。  相似文献   
79.
80.
Fox AR  Bart SC  Meyer K  Cummins CC 《Nature》2008,455(7211):341-349
The forefront of research into the complexes of uranium reveals chemical transformations that challenge and expand our view of this unique element. Certain ligands form multiple bonds to uranium, and small, inert molecules such as nitrogen and carbon dioxide become reactive when in complex with the metal. Such complexes provide clues to the catalytic future of uranium, in which the applications of the element extend far beyond the nuclear industry. Most excitingly, the ability of uranium to use its outermost f electrons for binding ligands might enable the element to catalyse reactions that are impossible with conventional, transition-metal catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号