首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   1篇
  国内免费   2篇
系统科学   13篇
理论与方法论   5篇
现状及发展   259篇
研究方法   100篇
综合类   568篇
自然研究   66篇
  2018年   4篇
  2016年   4篇
  2014年   3篇
  2013年   8篇
  2012年   31篇
  2011年   98篇
  2010年   6篇
  2008年   39篇
  2007年   37篇
  2006年   36篇
  2005年   37篇
  2004年   34篇
  2003年   31篇
  2002年   34篇
  2001年   20篇
  2000年   45篇
  1999年   16篇
  1994年   2篇
  1993年   3篇
  1992年   18篇
  1991年   10篇
  1990年   19篇
  1989年   15篇
  1988年   12篇
  1987年   14篇
  1986年   19篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   6篇
  1981年   9篇
  1980年   10篇
  1979年   16篇
  1978年   19篇
  1977年   20篇
  1976年   15篇
  1975年   20篇
  1974年   23篇
  1973年   17篇
  1972年   20篇
  1971年   31篇
  1970年   44篇
  1969年   15篇
  1968年   27篇
  1967年   26篇
  1966年   22篇
  1965年   10篇
  1964年   8篇
  1963年   2篇
  1961年   2篇
排序方式: 共有1011条查询结果,搜索用时 31 毫秒
11.
12.
13.
Smith CG  Aylward AD  Millward GH  Miller S  Moore LE 《Nature》2007,445(7126):399-401
The upper atmospheres of the four Solar System giant planets exhibit high temperatures that cannot be explained by the absorption of sunlight. In the case of Saturn the temperatures predicted by models of solar heating are approximately 200 K, compared to temperatures of approximately 400 K observed independently in the polar regions and at 30 degrees latitude. This unexplained 'energy crisis' represents a major gap in our understanding of these planets' atmospheres. An important candidate for the source of the missing energy is the magnetosphere, which injects energy mostly in the polar regions of the planet. This polar energy input is believed to be sufficient to explain the observed temperatures, provided that it is efficiently redistributed globally by winds, a process that is not well understood. Here we show, using a numerical model, that the net effect of the winds driven by the polar energy inputs is not to heat but to cool the low-latitude thermosphere. This surprising result allows us to rule out known polar energy inputs as the solution to the energy crisis at Saturn. There is either an unknown--and large--source of polar energy, or, more probably, some other process heats low latitudes directly.  相似文献   
14.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140?mm?Hg systolic blood pressure or ≥90?mm?Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.  相似文献   
15.
Smith K 《Nature》2011,478(7367):15
  相似文献   
16.
Sun B  Johnson DS  Patel G  Smith BY  Pandey M  Patel SS  Wang MD 《Nature》2011,478(7367):132-135
Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.  相似文献   
17.
18.
The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, 'dust-bowl-like' megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C(4) plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ~2?°C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4-6?°C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase.  相似文献   
19.
20.
Temporal activity patterns for Dipodomys ordii were generally bimodal during the summer, with the highest peak occurring during early predawn hours when conditions were optimum for water conservation. Removal of dominant members in the population resulted in a substantial shift in the activity pattern to increased activity during the evening hours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号