首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
  国内免费   5篇
理论与方法论   4篇
现状及发展   15篇
研究方法   8篇
综合类   64篇
自然研究   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   32篇
  1999年   1篇
  1997年   3篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
71.
72.
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.  相似文献   
73.
Smear M  Shusterman R  O'Connor R  Bozza T  Rinberg D 《Nature》2011,479(7373):397-400
Olfactory systems encode odours by which neurons respond and by when they respond. In mammals, every sniff evokes a precise, odour-specific sequence of activity across olfactory neurons. Likewise, in a variety of neural systems, ranging from sensory periphery to cognitive centres, neuronal activity is timed relative to sampling behaviour and/or internally generated oscillations. As in these neural systems, relative timing of activity may represent information in the olfactory system. However, there is no evidence that mammalian olfactory systems read such cues. To test whether mice perceive the timing of olfactory activation relative to the sniff cycle ('sniff phase'), we used optogenetics in gene-targeted mice to generate spatially constant, temporally controllable olfactory input. Here we show that mice can behaviourally report the sniff phase of optogenetically driven activation of olfactory sensory neurons. Furthermore, mice can discriminate between light-evoked inputs that are shifted in the sniff cycle by as little as 10 milliseconds, which is similar to the temporal precision of olfactory bulb odour responses. Electrophysiological recordings in the olfactory bulb of awake mice show that individual cells encode the timing of photoactivation in relation to the sniff in both the timing and the amplitude of their responses. Our work provides evidence that the mammalian olfactory system can read temporal patterns, and suggests that timing of activity relative to sampling behaviour is a potent cue that may enable accurate olfactory percepts to form quickly.  相似文献   
74.
The last decade and a half has seen an ardent development of self-organised criticality (SOC), a new approach to complex systems, which has become important in many domains of natural as well as social science, such as geology, biology, astronomy, and economics, to mention just a few. This has led many to adopt a generalist stance towards SOC, which is now repeatedly claimed to be a universal theory of complex behaviour. The aim of this paper is twofold. First, I provide a brief and non-technical introduction to SOC. Second, I critically discuss the various bold claims that have been made in connection with it. Throughout, I will adopt a rather sober attitude and argue that some people have been too readily carried away by fancy contentions. My overall conclusion will be that none of these bold claims can be maintained. Nevertheless, stripped of exaggerated expectations and daring assertions, many SOC models are interesting vehicles for promising scientific research.  相似文献   
75.
To identify susceptibility loci for classical Hodgkin's lymphoma (cHL), we conducted a genome-wide association study of 589 individuals with cHL (cases) and 5,199 controls with validation in four independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci at 2p16.1 (rs1432295, REL, odds ratio (OR) = 1.22, combined P = 1.91 × 10(-8)), 8q24.21 (rs2019960, PVT1, OR = 1.33, combined P = 1.26 × 10(-13)) and 10p14 (rs501764, GATA3, OR = 1.25, combined P = 7.05 × 10(-8)). Furthermore, we confirmed the role of the major histocompatibility complex in disease etiology by revealing a strong human leukocyte antigen (HLA) association (rs6903608, OR = 1.70, combined P = 2.84 × 10(-50)). These data provide new insight into the pathogenesis of cHL.  相似文献   
76.
We carried out a genome-wide association study in 296 individuals with male-pattern baldness (androgenetic alopecia) and 347 controls. We then investigated the 30 best SNPs in an independent replication sample and found highly significant association for five SNPs on chromosome 20p11 (rs2180439 combined P = 2.7 x 10(-15)). No interaction was detected with the X-chromosomal androgen receptor locus, suggesting that the 20p11 locus has a role in a yet-to-be-identified androgen-independent pathway.  相似文献   
77.
Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention.  相似文献   
78.
79.
The prokaryotic signal recognition particle (SRP) targets membrane proteins into the inner membrane. It binds translating ribosomes and screens the emerging nascent chain for a hydrophobic signal sequence, such as the transmembrane helix of inner membrane proteins. If such a sequence emerges, the SRP binds tightly, allowing the SRP receptor to lock on. This assembly delivers the ribosome-nascent chain complex to the protein translocation machinery in the membrane. Using cryo-electron microscopy and single-particle reconstruction, we obtained a 16 A structure of the Escherichia coli SRP in complex with a translating E. coli ribosome containing a nascent chain with a transmembrane helix anchor. We also obtained structural information on the SRP bound to an empty E. coli ribosome. The latter might share characteristics with a scanning SRP complex, whereas the former represents the next step: the targeting complex ready for receptor binding. High-resolution structures of the bacterial ribosome and of the bacterial SRP components are available, and their fitting explains our electron microscopic density. The structures reveal the regions that are involved in complex formation, provide insight into the conformation of the SRP on the ribosome and indicate the conformational changes that accompany high-affinity SRP binding to ribosome nascent chain complexes upon recognition of the signal sequence.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号