首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
理论与方法论   4篇
现状及发展   7篇
研究方法   11篇
综合类   34篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有56条查询结果,搜索用时 328 毫秒
51.
The principle of gating charge movement in a voltage-dependent K+ channel   总被引:9,自引:0,他引:9  
Jiang Y  Ruta V  Chen J  Lee A  MacKinnon R 《Nature》2003,423(6935):42-48
The steep dependence of channel opening on membrane voltage allows voltage-dependent K+ channels to turn on almost like a switch. Opening is driven by the movement of gating charges that originate from arginine residues on helical S4 segments of the protein. Each S4 segment forms half of a 'voltage-sensor paddle' on the channel's outer perimeter. Here we show that the voltage-sensor paddles are positioned inside the membrane, near the intracellular surface, when the channel is closed, and that the paddles move a large distance across the membrane from inside to outside when the channel opens. KvAP channels were reconstituted into planar lipid membranes and studied using monoclonal Fab fragments, a voltage-sensor toxin, and avidin binding to tethered biotin. Our findings lead us to conclude that the voltage-sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore.  相似文献   
52.
Zhou M  Morais-Cabral JH  Mann S  MacKinnon R 《Nature》2001,411(6838):657-661
Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.  相似文献   
53.
Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.  相似文献   
54.
55.
Hansen SB  Tao X  MacKinnon R 《Nature》2011,477(7365):495-498
The regulation of ion channel activity by specific lipid molecules is widely recognized as an integral component of electrical signalling in cells. In particular, phosphatidylinositol 4,5-bisphosphate (PIP(2)), a minor yet dynamic phospholipid component of cell membranes, is known to regulate many different ion channels. PIP(2) is the primary agonist for classical inward rectifier (Kir2) channels, through which this lipid can regulate a cell's resting membrane potential. However, the molecular mechanism by which PIP(2) exerts its action is unknown. Here we present the X-ray crystal structure of a Kir2.2 channel in complex with a short-chain (dioctanoyl) derivative of PIP(2). We found that PIP(2) binds at an interface between the transmembrane domain (TMD) and the cytoplasmic domain (CTD). The PIP(2)-binding site consists of a conserved non-specific phospholipid-binding region in the TMD and a specific phosphatidylinositol-binding region in the CTD. On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure, the CTD translates 6 ? and becomes tethered to the TMD and the inner helix gate begins to open. In contrast, the small anionic lipid dioctanoyl glycerol pyrophosphatidic acid (PPA) also binds to the non-specific TMD region, but not to the specific phosphatidylinositol region, and thus fails to engage the CTD or open the channel. Our results show how PIP(2) can control the resting membrane potential through a specific ion-channel-receptor-ligand interaction that brings about a large conformational change, analogous to neurotransmitter activation of ion channels at synapses.  相似文献   
56.
An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic methodology extended a strict measurement-based formulation of quantum mechanics through field theory. His extension also excluded the quark hypothesis and the standard model. Quarks and local gauge invariance are postulates that go beyond the limits of an epistemological interpretation of quantum mechanics. The ontological significance ascribed to these advances depends on the role accorded ontology.
Edward MacKinnonEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号