首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   1篇
系统科学   4篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   37篇
研究方法   30篇
综合类   112篇
自然研究   1篇
  2022年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   17篇
  2011年   31篇
  2010年   6篇
  2009年   2篇
  2008年   20篇
  2007年   12篇
  2006年   12篇
  2005年   14篇
  2004年   13篇
  2003年   15篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1969年   1篇
  1965年   2篇
  1964年   4篇
  1963年   1篇
  1946年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
91.
Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of desmosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is required for localization of EGFR and Dsg2 to cell–cell contacts. EGFR is critical for cell adhesion and barrier recovery. In line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanistically, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 via Src shapes EGFR function towards cell adhesion.  相似文献   
92.
93.
Waggoner SN  Cornberg M  Selin LK  Welsh RM 《Nature》2012,481(7381):394-398
Antiviral T cells are thought to regulate whether hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections result in viral control, asymptomatic persistence or severe disease, although the reasons for these different outcomes remain unclear. Recent genetic evidence, however, has indicated a correlation between certain natural killer (NK)-cell receptors and progression of both HIV and HCV infection, implying that NK cells have a role in these T-cell-associated diseases. Although direct NK-cell-mediated lysis of virus-infected cells may contribute to antiviral defence during some virus infections--especially murine cytomegalovirus (MCMV) infections in mice and perhaps HIV in humans--NK cells have also been suspected of having immunoregulatory functions. For instance, NK cells may indirectly regulate T-cell responses by lysing MCMV-infected antigen-presenting cells. In contrast to MCMV, lymphocytic choriomeningitis virus (LCMV) infection in mice seems to be resistant to any direct antiviral effects of NK cells. Here we examine the roles of NK cells in regulating T-cell-dependent viral persistence and immunopathology in mice infected with LCMV, an established model for HIV and HCV infections in humans. We describe a three-way interaction, whereby activated NK cells cytolytically eliminate activated CD4 T cells that affect CD8 T-cell function and exhaustion. At high virus doses, NK cells prevented fatal pathology while enabling T-cell exhaustion and viral persistence, but at medium doses NK cells paradoxically facilitated lethal T-cell-mediated pathology. Thus, NK cells can act as rheostats, regulating CD4 T-cell-mediated support for the antiviral CD8 T cells that control viral pathogenesis and persistence.  相似文献   
94.
Stemmler K  Ammann M  Donders C  Kleffmann J  George C 《Nature》2006,440(7081):195-198
Nitrous acid is a significant photochemical precursor of the hydroxyl radical, the key oxidant in the degradation of most air pollutants in the troposphere. The sources of nitrous acid in the troposphere, however, are still poorly understood. Recent atmospheric measurements revealed a strongly enhanced formation of nitrous acid during daytime via unknown mechanisms. Here we expose humic acid films to nitrogen dioxide in an irradiated tubular gas flow reactor and find that reduction of nitrogen dioxide on light-activated humic acids is an important source of gaseous nitrous acid. Our findings indicate that soil and other surfaces containing humic acid exhibit an organic surface photochemistry that produces reductive surface species, which react selectively with nitrogen dioxide. The observed rate of nitrous acid formation could explain the recently observed high daytime concentrations of nitrous acid in the boundary layer, the photolysis of which accounts for up to 60 per cent of the integrated hydroxyl radical source strengths. We suggest that this photo-induced nitrous acid production on humic acid could have a potentially significant impact on the chemistry of the lowermost troposphere.  相似文献   
95.
Dynamical fracture instabilities due to local hyperelasticity at crack tips   总被引:1,自引:0,他引:1  
Buehler MJ  Gao H 《Nature》2006,439(7074):307-310
As the speed of a crack propagating through a brittle material increases, a dynamical instability leads to an increased roughening of the fracture surface. Cracks moving at low speeds create atomically flat mirror-like surfaces; at higher speeds, rougher, less reflective ('mist') and finally very rough, irregularly faceted ('hackle') surfaces are formed. The behaviour is observed in many different brittle materials, but the underlying physical principles, though extensively debated, remain unresolved. Most existing theories of fracture assume a linear elastic stress-strain law. However, the relation between stress and strain in real solids is strongly nonlinear due to large deformations near a moving crack tip, a phenomenon referred to as hyperelasticity. Here we use massively parallel large-scale atomistic simulations--employing a simple atomistic material model that allows a systematic transition from linear elastic to strongly nonlinear behaviour--to show that hyperelasticity plays a governing role in the onset of the instability. We report a generalized model that describes the onset of instability as a competition between different mechanisms controlled by the local stress field and local energy flow near the crack tip. Our results indicate that such instabilities are intrinsic to dynamical fracture and they help to explain a range of controversial experimental and computational results.  相似文献   
96.
Zusammenfassung l-Cystein bewirkt in wässriger Lösung unter aeroben Bedingungen einen Abbau von Desoxyribonucleinsäure (DNS), während Cysteamin in derselben Versuchsanordnung diese Wirkung nicht ausübt. Durch Katalase sowie durch die Chelatbildner Desferrioxamin B und E.D.T.A. wird der abbauende Effekt von Cystein gegenüber DNS wesentlich verstärkt. Es liegen somit gerade die umgekehrten Verhältnisse vor wie beim DNS-Abbau durch Wasserstoffperoxyd, welcher durch die erwähnten Chelatbildner und durch Katalase stark abgeschwächt oder sogar unterbunden wird.  相似文献   
97.
98.
Peripheral infection is the natural route of transmission in most prion diseases. Peripheral prion infection is followed by rapid prion replication in lymphoid organs, neuroinvasion and progressive neurological disease. Both immune cells and nerves are involved in pathogenesis, but the mechanisms of prion transfer from the immune to the nervous system are unknown. Here we show that ablation of the chemokine receptor CXCR5 juxtaposes follicular dendritic cells (FDCs) to major splenic nerves, and accelerates the transfer of intraperitoneally administered prions into the spinal cord. Neuroinvasion velocity correlated exclusively with the relative locations of FDCs and nerves: transfer of CXCR5-/- bone marrow to wild-type mice induced perineural FDCs and enhanced neuroinvasion, whereas reciprocal transfer to CXCR5-/- mice abolished them and restored normal efficiency of neuroinvasion. Suppression of lymphotoxin signalling depleted FDCs, abolished splenic infectivity, and suppressed acceleration of pathogenesis in CXCR5-/- mice. This suggests that prion neuroimmune transition occurs between FDCs and sympathetic nerves, and relative positioning of FDCs and nerves controls the efficiency of peripheral prion infection.  相似文献   
99.
AAV serotype 2 vectors preferentially integrate into active genes in mice   总被引:23,自引:0,他引:23  
Recombinant adeno-associated virus serotype 2 (rAAV2) is a promising vector for gene therapy because it can achieve long-term stable transgene expression in animals and human subjects after direct administration of vectors into various target tissues. In the liver, although stable transgene expression primarily results from extrachromosomal vector genomes, a series of experiments has shown that vector genomes integrate into host chromosomes in hepatocytes at a low frequency. Despite the low integration efficiency, recent reports of retroviral insertional mutagenesis in mice and two human subjects have raised concerns about the potential for rAAV2-mediated insertional mutagenesis. Here we characterize rAAV2-targeted chromosomal integration sites isolated from selected or non-selected hepatocytes in vector-injected mouse livers. We document frequent chromosomal deletions of up to 2 kb at integration sites (14 of 14 integrations, 100%; most of the deletions were <0.3 kb) and preferred integration into genes (21 of 29 integrations, 72%). In addition, all of the targeted genes analyzed (20 of 20 targeted genes, 100%) were expressed in the liver. This is the first report to our knowledge on host chromosomal effects of rAAV2 integration in animals, and it provides insights into the nature of rAAV2 vector integration into chromosomes in quiescent somatic cells in animals and human subjects.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号