首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7865篇
  免费   79篇
  国内免费   139篇
系统科学   119篇
丛书文集   389篇
教育与普及   253篇
理论与方法论   17篇
现状及发展   724篇
研究方法   1163篇
综合类   5404篇
自然研究   14篇
  2018年   17篇
  2017年   32篇
  2016年   19篇
  2015年   26篇
  2014年   46篇
  2013年   29篇
  2012年   544篇
  2011年   700篇
  2010年   157篇
  2009年   35篇
  2008年   580篇
  2007年   659篇
  2006年   621篇
  2005年   620篇
  2004年   528篇
  2003年   505篇
  2002年   467篇
  2001年   373篇
  2000年   524篇
  1999年   179篇
  1998年   23篇
  1997年   21篇
  1996年   15篇
  1995年   18篇
  1994年   22篇
  1993年   22篇
  1992年   15篇
  1991年   31篇
  1990年   34篇
  1989年   27篇
  1988年   29篇
  1987年   30篇
  1986年   40篇
  1985年   31篇
  1984年   17篇
  1983年   22篇
  1982年   32篇
  1981年   23篇
  1980年   14篇
  1979年   20篇
  1971年   18篇
  1970年   39篇
  1966年   18篇
  1959年   104篇
  1958年   176篇
  1957年   124篇
  1956年   115篇
  1955年   117篇
  1954年   114篇
  1948年   28篇
排序方式: 共有8083条查询结果,搜索用时 171 毫秒
71.
Sato T  Mushiake S  Kato Y  Sato K  Sato M  Takeda N  Ozono K  Miki K  Kubo Y  Tsuji A  Harada R  Harada A 《Nature》2007,448(7151):366-369
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.  相似文献   
72.
Progressive field-state collapse and quantum non-demolition photon counting   总被引:1,自引:0,他引:1  
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.  相似文献   
73.
Immunoglobulin-A has an irreplaceable role in the mucosal defence against infectious microbes. In human and mouse, IgA-producing plasma cells comprise approximately 20% of total plasma cells of peripheral lymphoid tissues, whereas more than 80% of plasma cells produce IgA in mucosa-associated lymphoid tissues (MALT). One of the most biologically important and long-standing questions in immunology is why this 'biased' IgA synthesis takes place in the MALT but not other lymphoid organs. Here we show that IgA class-switch recombination (CSR) is impaired in inducible-nitric-oxide-synthase-deficient (iNOS-/-; gene also called Nos2) mice. iNOS regulates the T-cell-dependent IgA CSR through expression of transforming growth factor-beta receptor, and the T-cell-independent IgA CSR through production of a proliferation-inducing ligand (APRIL, also called Tnfsf13) and a B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF, also called Tnfsf13b). Notably, iNOS is preferentially expressed in MALT dendritic cells in response to the recognition of commensal bacteria by toll-like receptor. Furthermore, adoptive transfer of iNOS+ dendritic cells rescues IgA production in iNOS-/- mice. Further analysis revealed that the MALT dendritic cells are a TNF-alpha/iNOS-producing dendritic-cell subset, originally identified in mice infected with Listeria monocytogenes. The presence of a naturally occurring TNF-alpha/iNOS-producing dendritic-cell subset may explain the predominance of IgA production in the MALT, critical for gut homeostasis.  相似文献   
74.
The CDKN2b-CDKN2a locus on chromosome 9p21 in human (chromosome 4 in mouse) is frequently lost in cancer. The locus encodes three cell cycle inhibitory proteins: p15INK4b encoded by CDKN2b, p16INK4a encoded by CDKN2a and p14ARF (p19Arf in mice) encoded by an alternative reading frame of CDKN2a (ref. 1). Whereas the tumour suppressor functions for p16INK4a and p14ARF have been firmly established, the role of p15INK4b remains ambiguous. However, many 9p21 deletions also remove CDKN2b, so we hypothesized a synergistic effect of the combined deficiency for p15INK4b, p14ARF and p16INK4a. Here we report that mice deficient for all three open reading frames (Cdkn2ab-/-) are more tumour-prone and develop a wider spectrum of tumours than Cdkn2a mutant mice, with a preponderance of skin tumours and soft tissue sarcomas (for example, mesothelioma) frequently composed of mixed cell types and often showing biphasic differentiation. Cdkn2ab-/- mouse embryonic fibroblasts (MEFs) are substantially more sensitive to oncogenic transformation than Cdkn2a mutant MEFs. Under conditions of stress, p15Ink4b protein levels are significantly elevated in MEFs deficient for p16Ink4a. Our data indicate that p15Ink4b can fulfil a critical backup function for p16Ink4a and provide an explanation for the frequent loss of the complete CDKN2b-CDKN2a locus in human tumours.  相似文献   
75.
76.
Nearly two-dimensional (2D) metallic systems formed in charge inversion layers and artificial layered materials permit the existence of low-energy collective excitations, called 2D plasmons, which are not found in a three-dimensional (3D) metal. These excitations have caused considerable interest because their low energy allows them to participate in many dynamical processes involving electrons and phonons, and because they might mediate the formation of Cooper pairs in high-transition-temperature superconductors. Metals often support electronic states that are confined to the surface, forming a nearly 2D electron-density layer. However, it was argued that these systems could not support low-energy collective excitations because they would be screened out by the underlying bulk electrons. Rather, metallic surfaces should support only conventional surface plasmons-higher-energy modes that depend only on the electron density. Surface plasmons have important applications in microscopy and sub-wavelength optics, but have no relevance to the low-energy dynamics. Here we show that, in contrast to expectations, a low-energy collective excitation mode can be found on bare metal surfaces. The mode has an acoustic (linear) dispersion, different to the dependence of a 2D plasmon, and was observed on Be(0001) using angle-resolved electron energy loss spectroscopy. First-principles calculations show that it is caused by the coexistence of a partially occupied quasi-2D surface-state band with the underlying 3D bulk electron continuum and also that the non-local character of the dielectric function prevents it from being screened out by the 3D states. The acoustic plasmon reported here has a very general character and should be present on many metal surfaces. Furthermore, its acoustic dispersion allows the confinement of light on small surface areas and in a broad frequency range, which is relevant for nano-optics and photonics applications.  相似文献   
77.
Gandhi DD  Lane M  Zhou Y  Singh AP  Nayak S  Tisch U  Eizenberg M  Ramanath G 《Nature》2007,447(7142):299-302
Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants, in nanolithography, for corrosion protection and in the crystallization of biominerals. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices, and as passive layers, inhibiting interfacial diffusion, promoting adhesion and toughening brittle nanoporous structures. The relatively low stability of MNLs on surfaces at temperatures above 350-400 degrees C (refs 12, 13), as a result of desorption or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper-dielectric interfaces relevant to wiring in micro- and nano-electronic devices. Annealing Cu/MNL/SiO2 structures at 400-700 degrees C results in interfaces that are five times tougher than pristine Cu/SiO2 structures, yielding values exceeding approximately 20 J m(-2). Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option-such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.  相似文献   
78.
Zürner A  Kirstein J  Döblinger M  Bräuchle C  Bein T 《Nature》2007,450(7170):705-708
Periodic mesoporous materials formed through the cooperative self-assembly of surfactants and framework building blocks can assume a variety of structures, and their widely tuneable properties make them attractive hosts for numerous applications. Because the molecular movement in the pore system is the most important and defining characteristic of porous materials, it is of interest to learn about this behaviour as a function of local structure. Generally, individual fluorescent dye molecules can be used as molecular beacons with which to explore the structure of--and the dynamics within--these porous hosts, and single-molecule fluorescence techniques provide detailed insights into the dynamics of various processes, ranging from biology to heterogeneous catalysis. However, optical microscopy methods cannot directly image the mesoporous structure of the host system accommodating the diffusing molecules, whereas transmission electron microscopy provides detailed images of the porous structure, but no dynamic information. It has therefore not been possible to 'see' how molecules diffuse in a real nanoscale pore structure. Here we present a combination of electron microscopic mapping and optical single-molecule tracking experiments to reveal how a single luminescent dye molecule travels through linear or strongly curved sections of a mesoporous channel system. In our approach we directly correlate porous structures detected by transmission electron microscopy with the diffusion dynamics of single molecules detected by optical microscopy. This opens up new ways of understanding the interactions of host and guest.  相似文献   
79.
Identification of Tim4 as a phosphatidylserine receptor   总被引:1,自引:0,他引:1  
Miyanishi M  Tada K  Koike M  Uchiyama Y  Kitamura T  Nagata S 《Nature》2007,450(7168):435-439
In programmed cell death, a large number of cells undergo apoptosis, and are engulfed by macrophages to avoid the release of noxious materials from the dying cells. In definitive erythropoiesis, nuclei are expelled from erythroid precursor cells and are engulfed by macrophages. Phosphatidylserine is exposed on the surface of apoptotic cells and on the nuclei expelled from erythroid precursor cells; it works as an 'eat me' signal for phagocytes. Phosphatidylserine is also expressed on the surface of exosomes involved in intercellular signalling. Here we established a library of hamster monoclonal antibodies against mouse peritoneal macrophages, and found an antibody that strongly inhibited the phosphatidylserine-dependent engulfment of apoptotic cells. The antigen recognized by the antibody was identified by expression cloning as a type I transmembrane protein called Tim4 (T-cell immunoglobulin- and mucin-domain-containing molecule; also known as Timd4). Tim4 was expressed in Mac1+ cells in various mouse tissues, including spleen, lymph nodes and fetal liver. Tim4 bound apoptotic cells by recognizing phosphatidylserine via its immunoglobulin domain. The expression of Tim4 in fibroblasts enhanced their ability to engulf apoptotic cells. When the anti-Tim4 monoclonal antibody was administered into mice, the engulfment of apoptotic cells by thymic macrophages was significantly blocked, and the mice developed autoantibodies. Among the other Tim family members, Tim1, but neither Tim2 nor Tim3, specifically bound phosphatidylserine. Tim1- or Tim4-expressing Ba/F3 B cells were bound by exosomes via phosphatidylserine, and exosomes stimulated the interaction between Tim1 and Tim4. These results indicate that Tim4 and Tim1 are phosphatidylserine receptors for the engulfment of apoptotic cells, and may also be involved in intercellular signalling in which exosomes are involved.  相似文献   
80.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号