首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   2篇
理论与方法论   1篇
现状及发展   13篇
研究方法   14篇
综合类   35篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   10篇
  2008年   7篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1992年   1篇
排序方式: 共有63条查询结果,搜索用时 93 毫秒
21.
22.
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.  相似文献   
23.
Hybrid nanostructures, comprising of a metal core and a semiconductor shell layer, show great potential for a new generation of low-cost solar cells due to their unique electronic and optical properties. However, experimental results have fallen far short of the ultra-high efficiency(i.e. beyond Shockley-Queisser limit) predicted by theoretical simulations. This limits the commercial application of these materials. Here, a non-transparent organic solar cell with an array of Ag/ZnO nanowires has been experimentally fabricated to increase the internal quantum efficiency(IQE) by a factor of 2.5 compared to a planar counterpart. This result indicates a significant enhancement of charge collection efficiency due to the ultrafast Ag nanowire channels. This hybrid nanostructure can also serve as a perfect back reflector for semi-transparent solar cells, which can result in enhanced light absorption by a factor of 1.8 compared to the reference samples. The enhanced charge collection and light absorption can make these Ag/ZnO nanostructures available for the application of modern optoelectronic devices.  相似文献   
24.
25.
We used an enhanced luminescence technique to study the response of rat tissues, such as liver, heart, muscle and blood, to oxidative stress and to determine their antioxidant capacity. As previously found for liver homogenate, the intensity of light emission (E) of tissue homogenates and blood samples, stressed with sodium perborate, is dependent on concentration, and the dose-response curves can be described by the equation E=a·C/exp(b·C). Theb value depends on the antioxidant defence capability of the tissues. In fact, it increases when homogenates are supplemented with an antioxidant, and is correlated with tissue antioxidant capacity, evaluated by two previously set up methods both using the same luminescence technique. Our results indicate that the order of antioxidant capacity of the tissues is liver>blood>heart>muscle. Thea value depends on the systems catalysing the production of radical species. In fact, it is related to the tissue level of hemoproteins, which are known to act as catalysts in radical production from hydroperoxides. The equation proposed to describe the dose-response relation is simple to handle and permits an immediate connection with the two characteristics of the systems analysed which determine their response to the pro-oxidant treatment. However, the equation which best describes the above relation for all the tissues is the following: E=·C/exp(·C). The parameter assumes values smaller than 1, which seem to depend on relative amounts of tissue hemoproteins and antioxidants. The extension of the analysis to mitochondria shows that they respond to oxidative stress in a way analogous to the tissues, and that the adherence of the dose-response curve to the course predicted from the equation E=a·C/exp(b·C) is again dependent on hemoprotein content.  相似文献   
26.
27.
Using a positional cloning approach supported by comparative genomics, we have identified a previously unreported gene, EYS, at the RP25 locus on chromosome 6q12 commonly mutated in autosomal recessive retinitis pigmentosa. Spanning over 2 Mb, this is the largest eye-specific gene identified so far. EYS is independently disrupted in four other mammalian lineages, including that of rodents, but is well conserved from Drosophila to man and is likely to have a role in the modeling of retinal architecture.  相似文献   
28.
29.
Interleukin (IL)-32 is known as a proinflammatory cytokine that is likely involved in several diseases, including infections, chronic inflammation, and cancer. Since the first report in 2005, IL-32 has been the subject of numerous studies to unravel the biological function of this molecule. For example, silencing of endogenous IL-32 in primary or cell lines of human origin consistently suppressed responses to Toll-like receptors. The protein folding structure of the six isoforms of IL-32 does not resemble that of any classical cytokine and as of this writing, a specific IL-32 receptor has not been identified. Instead, we propose a mechanism by which exposure to extracellular IL-32 or overexpression of the molecule results in binding to intracellular partners that influences functions such as gene expression, cell death, or survival. As such, this review offers insights into the role of IL-32 in several diseases, host defense, inflammation, immune function, and cancer. Finally, possibilities to target IL-32 in several diseases are proposed.  相似文献   
30.
Using competition experiments in continuous cultures grown in different nutrient environments (glucose limited, ammonium limited, phosphate limited and white grape juice), we identified genes that show haploinsufficiency phenotypes (reduced growth rate when hemizygous) or haploproficiency phenotypes (increased growth rate when hemizygous). Haploproficient genes (815, 1,194, 733 and 654 in glucose-limited, ammonium-limited, phosphate-limited and white grape juice environments, respectively) frequently show that phenotype in a specific environmental context. For instance, genes encoding components of the ubiquitination pathway or the proteasome show haploproficiency in nitrogen-limited conditions where protein conservation may be beneficial. Haploinsufficiency is more likely to be observed in all environments, as is the case with genes determining polar growth of the cell. Haploproficient genes seem randomly distributed in the genome, whereas haploinsufficient genes (685, 765, 1,277 and 217 in glucose-limited, ammonium-limited, phosphate-limited and white grape juice environments, respectively) are over-represented on chromosome III. This chromosome determines a yeast's mating type, and the concentration of haploinsufficient genes there may be a mechanism to prevent its loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号