首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32029篇
  免费   121篇
  国内免费   285篇
系统科学   495篇
丛书文集   644篇
教育与普及   110篇
理论与方法论   123篇
现状及发展   12564篇
研究方法   1332篇
综合类   16428篇
自然研究   739篇
  2013年   384篇
  2012年   693篇
  2011年   1441篇
  2010年   440篇
  2009年   424篇
  2008年   753篇
  2007年   884篇
  2006年   898篇
  2005年   830篇
  2004年   698篇
  2003年   567篇
  2002年   569篇
  2001年   946篇
  2000年   962篇
  1999年   667篇
  1992年   527篇
  1991年   450篇
  1990年   471篇
  1989年   430篇
  1988年   391篇
  1987年   434篇
  1986年   447篇
  1985年   509篇
  1984年   443篇
  1983年   345篇
  1982年   314篇
  1981年   321篇
  1980年   404篇
  1979年   909篇
  1978年   696篇
  1977年   719篇
  1976年   530篇
  1975年   619篇
  1974年   885篇
  1973年   755篇
  1972年   736篇
  1971年   861篇
  1970年   1105篇
  1969年   844篇
  1968年   746篇
  1967年   868篇
  1966年   727篇
  1965年   542篇
  1959年   300篇
  1958年   474篇
  1957年   362篇
  1956年   296篇
  1955年   281篇
  1954年   264篇
  1948年   196篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Genomic instability in Gadd45a-deficient mice.   总被引:19,自引:0,他引:19  
Gadd45a-null mice generated by gene targeting exhibited several of the phenotypes characteristic of p53-deficient mice, including genomic instability, increased radiation carcinogenesis and a low frequency of exencephaly. Genomic instability was exemplified by aneuploidy, chromosome aberrations, gene amplification and centrosome amplification, and was accompanied by abnormalities in mitosis, cytokinesis and growth control. Unequal segregation of chromosomes due to multiple spindle poles during mitosis occurred in several Gadd45a -/- cell lineages and may contribute to the aneuploidy. Our results indicate that Gadd45a is one component of the p53 pathway that contributes to the maintenance of genomic stability.  相似文献   
992.
993.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   
994.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   
995.
The metabolic pathways that produce 11-cis retinal are important for vision because this retinoid is the chromophore residing in rhodopsin and the cone opsins. The all-trans retinal that is generated after cone and rod photopigments absorb photons of light is recycled back to 11-cis retinal by the retinal pigment epithelium and Müller cells of the retina. Several of the enzymes involved have recently been purified and molecularly cloned; here we focus on 11-cis retinol dehydrogenase (encoded by the gene RDH5; chromosome 12q13-14; ref. 4), the first cloned enzyme in this pathway. This microsomal enzyme is abundant in the retinal pigment epithelium, where it has been proposed to catalyse the conversion of 11-cis retinol to 11-cis retinal. We evaluated patients with hereditary retinal diseases featuring subretinal spots (retinitis punctata albescens and fundus albipunctatus) and patients with typical dominant or recessive retinitis pigmentosa for mutations in RDH5. Mutations were found only in two unrelated patients, both with fundus albipunctatus; they segregated with disease in the respective families. Recombinant mutant 11-cis retinol dehydrogenases had reduced activity compared with recombinant enzyme with wild-type sequence. Our results suggest that mutant alleles in RDH5 are a cause of fundus albipunctatus, a rare form of stationary night blindness characterized by a delay in the regeneration of cone and rod photopigments.  相似文献   
996.
Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 4102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84-102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells.  相似文献   
997.
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p2-1p22 has been shown to account for 40-50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.  相似文献   
998.
999.
1000.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号