首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   1篇
  国内免费   1篇
系统科学   6篇
丛书文集   1篇
教育与普及   1篇
理论与方法论   8篇
现状及发展   66篇
研究方法   60篇
综合类   231篇
自然研究   29篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   37篇
  2011年   69篇
  2010年   6篇
  2009年   5篇
  2008年   24篇
  2007年   32篇
  2006年   34篇
  2005年   33篇
  2004年   30篇
  2003年   19篇
  2002年   22篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1995年   4篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1982年   1篇
  1979年   2篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1966年   4篇
  1965年   4篇
  1961年   1篇
  1956年   1篇
  1945年   1篇
排序方式: 共有402条查询结果,搜索用时 219 毫秒
61.
62.
CpG islands are present in one-half of all human and mouse genes and typically overlap with promoters or exons. We developed a method for high-resolution analysis of the methylation status of CpG islands genome-wide, using arrays of BAC clones and the methylation-sensitive restriction enzyme NotI. Here we demonstrate the accuracy and specificity of the method. By computationally mapping all NotI sites, methylation events can be defined with single-nucleotide precision throughout the genome. We also demonstrate the unique expandability of the array method using a different methylation-sensitive restriction enzyme, BssHII. We identified and validated new CpG island loci that are methylated in a tissue-specific manner in normal human tissues. The methylation status of the CpG islands is associated with gene expression for several genes, including SHANK3, which encodes a structural protein in neuronal postsynaptic densities. Defects in SHANK3 seem to underlie human 22q13 deletion syndrome. Furthermore, these patterns for SHANK3 are conserved in mice and rats.  相似文献   
63.
In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine to uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.  相似文献   
64.
Genome sequencing in microfabricated high-density picolitre reactors   总被引:21,自引:0,他引:21  
The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.  相似文献   
65.
The opening and closing of voltage-activated Na+, Ca2+ and K+ (Kv) channels underlies electrical and chemical signalling throughout biology, yet the structural basis of voltage sensing is unknown. Hanatoxin is a tarantula toxin that inhibits Kv channels by binding to voltage-sensor paddles, crucial helix-turn-helix motifs within the voltage-sensing domains that are composed of S3b and S4 helices. The active surface of the toxin is amphipathic, and related toxins have been shown to partition into membranes, raising the possibility that the toxin is concentrated in the membrane and interacts only weakly and transiently with the voltage sensors. Here we examine the kinetics and state dependence of the toxin-channel interaction and the physical location of the toxin in the membrane. We find that hanatoxin forms a strong and stable complex with the voltage sensors, far outlasting fluctuations of the voltage sensors between resting (closed) conformations at negative voltages and activated (open) conformations at positive voltages. Toxin affinity is reduced by voltage-sensor activation, explaining why the toxin stabilizes the resting conformation. We also find that when hanatoxin partitions into membranes it is localized to an interfacial region, with Trp 30 positioned about 8.5 A from the centre of the bilayer. These results demonstrate that voltage-sensor paddles activate with a toxin as cargo, and suggest that the paddles traverse no more than the outer half of the bilayer during activation.  相似文献   
66.
67.
68.
69.
Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.  相似文献   
70.
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号