首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2301篇
  免费   45篇
  国内免费   16篇
系统科学   38篇
丛书文集   4篇
教育与普及   2篇
理论与方法论   4篇
现状及发展   1077篇
研究方法   154篇
综合类   1073篇
自然研究   10篇
  2018年   22篇
  2017年   23篇
  2016年   35篇
  2015年   18篇
  2014年   28篇
  2013年   54篇
  2012年   111篇
  2011年   113篇
  2010年   80篇
  2009年   36篇
  2008年   86篇
  2007年   85篇
  2006年   93篇
  2005年   102篇
  2004年   66篇
  2003年   70篇
  2002年   65篇
  2001年   44篇
  2000年   62篇
  1999年   33篇
  1994年   18篇
  1992年   31篇
  1991年   30篇
  1990年   22篇
  1989年   32篇
  1988年   29篇
  1987年   18篇
  1986年   18篇
  1985年   29篇
  1984年   26篇
  1983年   23篇
  1982年   21篇
  1981年   18篇
  1980年   17篇
  1979年   46篇
  1978年   26篇
  1977年   43篇
  1976年   27篇
  1975年   27篇
  1974年   46篇
  1973年   39篇
  1972年   53篇
  1971年   37篇
  1970年   44篇
  1969年   42篇
  1968年   48篇
  1967年   35篇
  1966年   34篇
  1965年   22篇
  1964年   25篇
排序方式: 共有2362条查询结果,搜索用时 46 毫秒
41.
Ferromagnetic or antiferromagnetic spin ordering is governed by the exchange interaction, the strongest force in magnetism. Understanding spin dynamics in magnetic materials is an issue of crucial importance for progress in information processing and recording technology. Usually the dynamics are studied by observing the collective response of exchange-coupled spins, that is, spin resonances, after an external perturbation by a pulse of magnetic field, current or light. The periods of the corresponding resonances range from one nanosecond for ferromagnets down to one picosecond for antiferromagnets. However, virtually nothing is known about the behaviour of spins in a magnetic material after being excited on a timescale faster than that corresponding to the exchange interaction (10-100?fs), that is, in a non-adiabatic way. Here we use the element-specific technique X-ray magnetic circular dichroism to study spin reversal in GdFeCo that is optically excited on a timescale pertinent to the characteristic time of the exchange interaction between Gd and Fe spins. We unexpectedly find that the ultrafast spin reversal in this material, where spins are coupled antiferromagnetically, occurs by way of a transient ferromagnetic-like state. Following the optical excitation, the net magnetizations of the Gd and Fe sublattices rapidly collapse, switch their direction and rebuild their net magnetic moments at substantially different timescales; the net magnetic moment of the Gd sublattice is found to reverse within 1.5 picoseconds, which is substantially slower than the Fe reversal time of 300 femtoseconds. Consequently, a transient state characterized by a temporary parallel alignment of the net Gd and Fe moments emerges, despite their ground-state antiferromagnetic coupling. These surprising observations, supported by atomistic simulations, provide a concept for the possibility of manipulating magnetic order on the timescale of the exchange interaction.  相似文献   
42.
43.
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.  相似文献   
44.
Letzkus JJ  Wolff SB  Meyer EM  Tovote P  Courtin J  Herry C  Lüthi A 《Nature》2011,480(7377):331-335
Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits.  相似文献   
45.
Müller FJ  Schuppert A 《Nature》2011,478(7369):E4; discussion E4-E4; discussion E5
  相似文献   
46.
Copy number variation and selection during reprogramming to pluripotency   总被引:2,自引:0,他引:2  
The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.  相似文献   
47.
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.  相似文献   
48.
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.  相似文献   
49.
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.  相似文献   
50.
This paper investigated the age-related changes in the expression patterns of maintenance methyltransferase (DNMT1) and de novo methyltransferases (DNMT3a, 3b, 3L) and the chromosome architecture in in-vivo matured mouse oocytes using two-photon laser-scanning microscope. Our results showed that (1) DNMT1 and DNMT3a, 3b, 3L in the oocytes of pubertal mice were located in the cortical region of oocyte cytoplasm. In aging groups, DNMT1 was also located in the cortical region. However, DNMT3a, 3b, 3L had a relatively wider distribution in the oocyte cytoplasm and appeared near the chromosomes. These differences between pubertal and aging groups suggested that aging might affect DNA methylation; (2) the expression of DNMT1, and DNMT3a, 3b in aging groups increased significantly compared to pubertal groups, while, the expression of DNMT3L decreased. These results might be explained by the compensation mechanism among DNMTs, which might be impervious to aging; (3) aging caused increased errors in the distribution and three-dimensional morphology of chromosomes, including the increased total volume and surface area, the high ratio of height to diameter of a circular cylinder enclosing the chromosomes (H/D). Our work provided morphological information for the studies of age-related decline in oocyte qualities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号