首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   1篇
  国内免费   3篇
理论与方法论   4篇
现状及发展   55篇
研究方法   31篇
综合类   91篇
自然研究   6篇
  2021年   1篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2013年   2篇
  2012年   20篇
  2011年   15篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   14篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   11篇
  2001年   1篇
  2000年   8篇
  1999年   1篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1980年   1篇
  1979年   8篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1971年   4篇
  1970年   1篇
  1968年   1篇
  1965年   6篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
61.
62.
Summary Starting from methyl 3-oxo-4-etienate, the authors prepared 17-hydroxymethyl-4-androsten-3-one and 11-hydroxy-17-hydroxymethyl-4-androsten-3-one. Chlorination of 17-acetoxymethyl-4-androsten-3-one yielded 4-chloro-17-acetoxymethyl-4-androsten-3-one. 17-Hydroxymethyl-1, 4-androstadien-3-one was obtained from 17-hydroxymethyl-4-androsten-3-one, both by chemical and biological methods.  相似文献   
63.
64.
DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation. Gadd45a overexpression activates methylation-silenced reporter plasmids and promotes global DNA demethylation. Gadd45a knockdown silences gene expression and leads to DNA hypermethylation. During active demethylation of oct4 in Xenopus laevis oocytes, Gadd45a is specifically recruited to the site of demethylation. Active demethylation occurs by DNA repair and Gadd45a interacts with and requires the DNA repair endonuclease XPG. We conclude that Gadd45a relieves epigenetic gene silencing by promoting DNA repair, which erases methylation marks.  相似文献   
65.
The gut microbiota is a complex ecosystem that has coevolved with host physiology. Colonization of germ-free (GF) mice with a microbiota promotes increased vessel density in the small intestine, but little is known about the mechanisms involved. Tissue factor (TF) is the membrane receptor that initiates the extrinsic coagulation pathway, and it promotes developmental and tumour angiogenesis. Here we show that the gut microbiota promotes TF glycosylation associated with localization of TF on the cell surface, the activation of coagulation proteases, and phosphorylation of the TF cytoplasmic domain in the small intestine. Anti-TF treatment of colonized GF mice decreased microbiota-induced vascular remodelling and expression of the proangiogenic factor angiopoietin-1 (Ang-1) in the small intestine. Mice with a genetic deletion of the TF cytoplasmic domain or with hypomorphic TF (F3) alleles had a decreased intestinal vessel density. Coagulation proteases downstream of TF activate protease-activated receptor (PAR) signalling implicated in angiogenesis. Vessel density and phosphorylation of the cytoplasmic domain of TF were decreased in small intestine from PAR1-deficient (F2r(-/-)) but not PAR2-deficient (F2rl1(-/-)) mice, and inhibition of thrombin showed that thrombin-PAR1 signalling was upstream of TF phosphorylation. Thus, the microbiota-induced extravascular TF-PAR1 signalling loop is a novel pathway that may be modulated to influence vascular remodelling in the small intestine.  相似文献   
66.
67.
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.  相似文献   
68.
69.
Anti-nucleic acid specificites of mouse myeloma immunoglobulins   总被引:5,自引:0,他引:5  
D Schubert  A Roman  M Cohn 《Nature》1970,225(5228):154-158
  相似文献   
70.

Background

Viral myocarditis can severely damage the myocardium through excessive infiltration of immune cells. Osteoglycin (OGN) is part of the small leucine-rich repeat proteoglycan (SLRP) family. SLRP’s may affect inflammatory and fibrotic processes, but the implication of OGN in cardiac inflammation and the resulting injury upon viral myocarditis is unknown.

Methods and results

This study uncovered a previously unidentified 72-kDa variant of OGN that is predominant in cardiac human and mouse samples of viral myocarditis. Its absence in mice significantly decreased cardiac inflammation and injury in Coxsackievirus-B3-induced myocarditis. It also delayed mortality in lipopolysaccharide-induced endotoxemia going along with a reduced systemic production of pro-inflammatory cytokines. This 72-kDa OGN is expressed in the cell membrane of circulating and resident cardiac macrophages and neutrophils. Co-immunoprecipitation and OGN siRNA experiments revealed that this 72-kDa variant activates the toll-like receptor-4 (TLR4) with a concomitant increase in IL-6, TNF-α, IL-1β, and IL-12 expression. This immune cell activation by OGN occurred via MyD88 and increased phosphorylation of c-jun. Finally, the 72-kDa chondroitin sulfate is the result of O-linked glycosylation of the 32-kDa protein core of OGN. In contrast, the 34-kDa dermatan sulfate-OGN, involved in collagen cross linking, was also the result of O-linked glycosylation.

Conclusion

The current study discovered a novel 72-kDa chondroitin sulfate-OGN that is specific for innate immune cells. This variant is able to bind and activate TLR4. The absence of OGN decreases cytokine production by both circulating and cardiac leukocytes upon (systemic) LPS exposure, and reduces cardiac inflammation and injury in viral myocarditis.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号