首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   2篇
  国内免费   2篇
现状及发展   4篇
研究方法   16篇
综合类   51篇
自然研究   2篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2000年   2篇
排序方式: 共有73条查询结果,搜索用时 62 毫秒
21.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.  相似文献   
22.
23.
Ikeda N  Ohsumi H  Ohwada K  Ishii K  Inami T  Kakurai K  Murakami Y  Yoshii K  Mori S  Horibe Y  Kitô H 《Nature》2005,436(7054):1136-1138
Ferroelectric materials are widely used in modern electric devices such as memory elements, filtering devices and high-performance insulators. Ferroelectric crystals have a spontaneous electric polarization arising from the coherent arrangement of electric dipoles (specifically, a polar displacement of anions and cations). First-principles calculations and electron density analysis of ferroelectric materials have revealed that the covalent bond between the anions and cations, or the orbital hybridization of electrons on both ions, plays a key role in establishing the dipolar arrangement. However, an alternative model-electronic ferroelectricity-has been proposed in which the electric dipole depends on electron correlations, rather than the covalency. This would offer the attractive possibility of ferroelectric materials that could be controlled by the charge, spin and orbital degrees of freedom of the electron. Here we report experimental evidence for ferroelectricity arising from electron correlations in the triangular mixed valence oxide, LuFe(2)O(4). Using resonant X-ray scattering measurements, we determine the ordering of the Fe(2+) and Fe(3+) ions. They form a superstructure that supports an electric polarization consisting of distributed electrons of polar symmetry. The polar ordering arises from the repulsive property of electrons-electron correlations-acting on a frustrated geometry.  相似文献   
24.
The high-pressure technique is a fundamental tool for realizing novel phase transitions, chemical reactions, and other exotic phenomena. Hydrogenation is one example of a high-pressure reaction; at high pressures of several gigapascals, hydrogen becomes chemically active and reacts with metals and alloys to form hydrides. This paper covers a high-pressure study of the hydrogenation process and the synthesis of hydrides using a cubic-type multi-anvil apparatus. The experimental details of a hydrogenation cell assembly, high-temperature and highpressure generation, and an in situ observation technique are presented. These experiments are conducted with the aid of in situ synchrotron radiation X-ray diffraction measurements operated in an energy-dispersive mode in the conventional manner for time-resolved measurements and a newly developed angle-dispersive mode for observation of the crystal growth process during formation of metal hydrides. Two successful cases of high-pressure hydrogenation are presented: aluminum hydride, Al H3, and an aluminum-based alloy hydride, Al2 Cu Hx, which are potential candidates for hydrogen storage materials.  相似文献   
25.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   
26.
The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.  相似文献   
27.
Neuroblastoma in advanced stages is one of the most intractable paediatric cancers, even with recent therapeutic advances. Neuroblastoma harbours a variety of genetic changes, including a high frequency of MYCN amplification, loss of heterozygosity at 1p36 and 11q, and gain of genetic material from 17q, all of which have been implicated in the pathogenesis of neuroblastoma. However, the scarcity of reliable molecular targets has hampered the development of effective therapeutic agents targeting neuroblastoma. Here we show that the anaplastic lymphoma kinase (ALK), originally identified as a fusion kinase in a subtype of non-Hodgkin's lymphoma (NPM-ALK) and more recently in adenocarcinoma of lung (EML4-ALK), is also a frequent target of genetic alteration in advanced neuroblastoma. According to our genome-wide scans of genetic lesions in 215 primary neuroblastoma samples using high-density single-nucleotide polymorphism genotyping microarrays, the ALK locus, centromeric to the MYCN locus, was identified as a recurrent target of copy number gain and gene amplification. Furthermore, DNA sequencing of ALK revealed eight novel missense mutations in 13 out of 215 (6.1%) fresh tumours and 8 out of 24 (33%) neuroblastoma-derived cell lines. All but one mutation in the primary samples (12 out of 13) were found in stages 3-4 of the disease and were harboured in the kinase domain. The mutated kinases were autophosphorylated and displayed increased kinase activity compared with the wild-type kinase. They were able to transform NIH3T3 fibroblasts as shown by their colony formation ability in soft agar and their capacity to form tumours in nude mice. Furthermore, we demonstrate that downregulation of ALK through RNA interference suppresses proliferation of neuroblastoma cells harbouring mutated ALK. We anticipate that our findings will provide new insights into the pathogenesis of advanced neuroblastoma and that ALK-specific kinase inhibitors might improve its clinical outcome.  相似文献   
28.
Over 30% of proteins are secreted across or integrated into membranes. Their newly synthesized forms contain either cleavable signal sequences or non-cleavable membrane anchor sequences, which direct them to the evolutionarily conserved Sec translocon (SecYEG in prokaryotes and Sec61, comprising alpha-, gamma- and beta-subunits, in eukaryotes). The translocon then functions as a protein-conducting channel. These processes of protein localization occur either at or after translation. In bacteria, the SecA ATPase drives post-translational translocation. The only high-resolution structure of a translocon available so far is that for SecYEbeta from the archaeon Methanococcus jannaschii, which lacks SecA. Here we present the 3.2-A-resolution crystal structure of the SecYE translocon from a SecA-containing organism, Thermus thermophilus. The structure, solved as a complex with an anti-SecY Fab fragment, revealed a 'pre-open' state of SecYE, in which several transmembrane helices are shifted, as compared to the previous SecYEbeta structure, to create a hydrophobic crack open to the cytoplasm. Fab and SecA bind to a common site at the tip of the cytoplasmic domain of SecY. Molecular dynamics and disulphide mapping analyses suggest that the pre-open state might represent a SecYE conformational transition that is inducible by SecA binding. Moreover, we identified a SecA-SecYE interface that comprises SecA residues originally buried inside the protein, indicating that both the channel and the motor components of the Sec machinery undergo cooperative conformational changes on formation of the functional complex.  相似文献   
29.
This paper examines the performance of iterated and direct forecasts for the number of shares traded in high‐frequency intraday data. Constructing direct forecasts in the context of formulating volume weighted average price trading strategies requires the generation of a sequence of multistep‐ahead forecasts. I discuss nonlinear transformations to ensure nonnegative forecasts and lag length selection for generating a sequence of direct forecasts. In contrast to the literature based on low‐frequency macroeconomic data, I find that direct multiperiod forecasts can outperform iterated forecasts when the conditioning information set is dynamically updated in real time.  相似文献   
30.
We performed a genome-wide association study (GWAS) of Kawasaki disease in Japanese subjects using data from 428 individuals with Kawasaki disease (cases) and 3,379 controls genotyped at 473,803 SNPs. We validated the association results in two independent replication panels totaling 754 cases and 947 controls. We observed significant associations in the FAM167A-BLK region at 8p22-23 (rs2254546, P = 8.2 × 10(-21)), in the human leukocyte antigen (HLA) region at 6p21.3 (rs2857151, P = 4.6 × 10(-11)) and in the CD40 region at 20q13 (rs4813003, P = 4.8 × 10(-8)). We also replicated the association of a functional SNP of FCGR2A (rs1801274, P = 1.6 × 10(-6)) identified in a recently reported GWAS of Kawasaki disease. Our findings provide new insights into the pathogenesis and pathophysiology of Kawasaki disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号