首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11939篇
  免费   25篇
  国内免费   43篇
系统科学   35篇
丛书文集   80篇
教育与普及   30篇
理论与方法论   48篇
现状及发展   5138篇
研究方法   580篇
综合类   5927篇
自然研究   169篇
  2013年   99篇
  2012年   192篇
  2011年   352篇
  2010年   86篇
  2009年   59篇
  2008年   199篇
  2007年   227篇
  2006年   209篇
  2005年   226篇
  2004年   214篇
  2003年   212篇
  2002年   201篇
  2001年   381篇
  2000年   365篇
  1999年   263篇
  1992年   232篇
  1991年   181篇
  1990年   205篇
  1989年   191篇
  1988年   202篇
  1987年   205篇
  1986年   160篇
  1985年   248篇
  1984年   170篇
  1983年   150篇
  1982年   167篇
  1981年   135篇
  1980年   171篇
  1979年   387篇
  1978年   292篇
  1977年   289篇
  1976年   250篇
  1975年   287篇
  1974年   309篇
  1973年   308篇
  1972年   345篇
  1971年   345篇
  1970年   429篇
  1969年   362篇
  1968年   382篇
  1967年   352篇
  1966年   321篇
  1965年   205篇
  1959年   107篇
  1958年   204篇
  1957年   138篇
  1956年   122篇
  1955年   105篇
  1954年   81篇
  1948年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.  相似文献   
142.
In 2005, plumes were detected near the south polar region of Enceladus, a small icy satellite of Saturn. Observations of the south pole revealed large rifts in the crust, informally called 'tiger stripes', which exhibit higher temperatures than the surrounding terrain and are probably sources of the observed eruptions. Models of the ultimate interior source for the eruptions are under consideration. Other models of an expanding plume require eruptions from discrete sources, as well as less voluminous eruptions from a more extended source, to match the observations. No physical mechanism that matches the observations has been identified to control these eruptions. Here we report a mechanism in which temporal variations in tidal stress open and close the tiger-stripe rifts, governing the timing of eruptions. During each orbit, every portion of each tiger stripe rift spends about half the time in tension, which allows the rift to open, exposing volatiles, and allowing eruptions. In a complementary process, periodic shear stress along the rifts also generates heat along their lengths, which has the capacity to enhance eruptions. Plume activity is expected to vary periodically, affecting the injection of material into Saturn's E ring and its formation, evolution and structure. Moreover, the stresses controlling eruptions imply that Enceladus' icy shell behaves as a thin elastic layer, perhaps only a few tens of kilometres thick.  相似文献   
143.
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.  相似文献   
144.
Pillitteri LJ  Sloan DB  Bogenschutz NL  Torii KU 《Nature》2007,445(7127):501-505
Stomata consist of a pair of guard cells that mediate gas and water-vapour exchange between plants and the atmosphere. Stomatal precursor cells-meristemoids-possess a transient stem-cell-like property and undergo several rounds of asymmetric divisions before further differentiation. Here we report that the Arabidopsis thaliana basic helix-loop-helix (bHLH) protein MUTE is a key switch for meristemoid fate transition. In the absence of MUTE, meristemoids abort after excessive asymmetric divisions and fail to differentiate stomata. Constitutive overexpression of MUTE directs the entire epidermis to adopt guard cell identity. MUTE has two paralogues: FAMA, a regulator of guard cell morphogenesis, and SPEECHLESS (SPCH). We show that SPCH directs the first asymmetric division that initiates stomatal lineage. Together, SPCH, MUTE and FAMA bHLH proteins control stomatal development at three consecutive steps: initiation, meristemoid differentiation and guard cell morphogenesis. Our findings highlight the roles of closely related bHLHs in cell type differentiation in plants and animals.  相似文献   
145.
Jones WD  Cayirlioglu P  Kadow IG  Vosshall LB 《Nature》2007,445(7123):86-90
Blood-feeding insects, including the malaria mosquito Anopheles gambiae, use highly specialized and sensitive olfactory systems to locate their hosts. This is accomplished by detecting and following plumes of volatile host emissions, which include carbon dioxide (CO2). CO2 is sensed by a population of olfactory sensory neurons in the maxillary palps of mosquitoes and in the antennae of the more genetically tractable fruitfly, Drosophila melanogaster. The molecular identity of the chemosensory CO2 receptor, however, remains unknown. Here we report that CO2-responsive neurons in Drosophila co-express a pair of chemosensory receptors, Gr21a and Gr63a, at both larval and adult life stages. We identify mosquito homologues of Gr21a and Gr63a, GPRGR22 and GPRGR24, and show that these are co-expressed in A. gambiae maxillary palps. We show that Gr21a and Gr63a together are sufficient for olfactory CO2-chemosensation in Drosophila. Ectopic expression of Gr21a and Gr63a together confers CO2 sensitivity on CO2-insensitive olfactory neurons, but neither gustatory receptor alone has this function. Mutant flies lacking Gr63a lose both electrophysiological and behavioural responses to CO2. Knowledge of the molecular identity of the insect olfactory CO2 receptors may spur the development of novel mosquito control strategies designed to take advantage of this unique and critical olfactory pathway. This in turn could bolster the worldwide fight against malaria and other insect-borne diseases.  相似文献   
146.
The enzyme uracil DNA glycosylase (UNG) excises unwanted uracil bases in the genome using an extrahelical base recognition mechanism. Efficient removal of uracil is essential for prevention of C-to-T transition mutations arising from cytosine deamination, cytotoxic U*A pairs arising from incorporation of dUTP in DNA, and for increasing immunoglobulin gene diversity during the acquired immune response. A central event in all of these UNG-mediated processes is the singling out of rare U*A or U*G base pairs in a background of approximately 10(9) T*A or C*G base pairs in the human genome. Here we establish for the human and Escherichia coli enzymes that discrimination of thymine and uracil is initiated by thermally induced opening of T*A and U*A base pairs and not by active participation of the enzyme. Thus, base-pair dynamics has a critical role in the genome-wide search for uracil, and may be involved in initial damage recognition by other DNA repair glycosylases.  相似文献   
147.
Höner OP  Wachter B  East ML  Streich WJ  Wilhelm K  Burke T  Hofer H 《Nature》2007,448(7155):798-801
Dispersal has a significant impact on lifetime reproductive success, and is often more prevalent in one sex than the other. In group-living mammals, dispersal is normally male-biased and in theory this sexual bias could be a response by males to female mate preferences, competition for access to females or resources, or the result of males avoiding inbreeding. There is a lack of studies on social mammals that simultaneously assess these factors and measure the fitness consequences of male dispersal decisions. Here we show that male-biased dispersal in the spotted hyaena (Crocuta crocuta) most probably results from an adaptive response by males to simple female mate-choice rules that have evolved to avoid inbreeding. Microsatellite profiling revealed that females preferred sires that were born into or immigrated into the female's group after the female was born. Furthermore, young females preferred short-tenured sires and older females preferred longer-tenured sires. Males responded to these female mate preferences by initiating their reproductive careers in groups containing the highest number of young females. As a consequence, 11% of males started their reproductive career in their natal group and 89% of males dispersed. Males that started reproduction in groups containing the highest number of young females had a higher long-term reproductive success than males that did not. The female mate-choice rules ensured that females effectively avoided inbreeding without the need to discriminate directly against close kin or males born in their own group, or to favour immigrant males. The extent of male dispersal as a response to such female mate preferences depends on the demographic structure of breeding groups, rather than the genetic relatedness between females and males.  相似文献   
148.
Engulfment and subsequent degradation of apoptotic cells is an essential step that occurs throughout life in all multicellular organisms. ELMO/Dock180/Rac proteins are a conserved signalling module for promoting the internalization of apoptotic cell corpses; ELMO and Dock180 function together as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac, and thereby regulate the phagocyte actin cytoskeleton during engulfment. However, the receptor(s) upstream of the ELMO/Dock180/Rac module are still unknown. Here we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a receptor upstream of ELMO and as a receptor that can bind phosphatidylserine on apoptotic cells. BAI1 is a seven-transmembrane protein belonging to the adhesion-type G-protein-coupled receptor family, with an extended extracellular region and no known ligands. We show that BAI1 functions as an engulfment receptor in both the recognition and subsequent internalization of apoptotic cells. Through multiple lines of investigation, we identify phosphatidylserine, a key 'eat-me' signal exposed on apoptotic cells, as a ligand for BAI1. The thrombospondin type 1 repeats within the extracellular region of BAI1 mediate direct binding to phosphatidylserine. As with intracellular signalling, BAI1 forms a trimeric complex with ELMO and Dock180, and functional studies suggest that BAI1 cooperates with ELMO/Dock180/Rac to promote maximal engulfment of apoptotic cells. Last, decreased BAI1 expression or interference with BAI1 function inhibits the engulfment of apoptotic targets ex vivo and in vivo. Thus, BAI1 is a phosphatidylserine recognition receptor that can directly recruit a Rac-GEF complex to mediate the uptake of apoptotic cells.  相似文献   
149.
Van Aken BB  Rivera JP  Schmid H  Fiebig M 《Nature》2007,449(7163):702-705
Domains are of unparalleled technological importance as they are used for information storage and for electronic, magnetic and optical switches. They are an essential property of any ferroic material. Three forms of ferroic order are widely known: ferromagnetism, a spontaneous magnetization; ferroelectricity, a spontaneous polarization; and ferroelasticity, a spontaneous strain. It is currently debated whether to include an ordered arrangement of magnetic vortices as a fourth form of ferroic order, termed ferrotoroidicity. Although there are reasons to expect this form of order from the point of view of thermodynamics, a crucial hallmark of the ferroic state--that is, ferrotoroidic domains--has not hitherto been observed. Here ferrotoroidic domains are spatially resolved by optical second harmonic generation in LiCoPO4, where they coexist with independent antiferromagnetic domains. Their space- and time-asymmetric nature relates ferrotoroidics to multiferroics with magnetoelectric phase control and to other systems in which space and time asymmetry leads to possibilities for future applications.  相似文献   
150.
Debaille V  Brandon AD  Yin QZ  Jacobsen B 《Nature》2007,450(7169):525-528
Resolving early silicate differentiation timescales is crucial for understanding the chemical evolution and thermal histories of terrestrial planets. Planetary-scale magma oceans are thought to have formed during early stages of differentiation, but the longevity of such magma oceans is poorly constrained. In Mars, the absence of vigorous convection and plate tectonics has limited the scale of compositional mixing within its interior, thus preserving the early stages of planetary differentiation. The SNC (Shergotty-Nakhla-Chassigny) meteorites from Mars retain 'memory' of these events. Here we apply the short-lived 146Sm-142Nd and the long-lived 147Sm-143Nd chronometers to a suite of shergottites to unravel the history of early silicate differentiation in Mars. Our data are best explained by progressive crystallization of a magma ocean with a duration of approximately 100 million years after core formation. This prolonged solidification requires the existence of a primitive thick atmosphere on Mars that reduces the cooling rate of the interior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号