首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   0篇
  国内免费   2篇
系统科学   1篇
教育与普及   1篇
理论与方法论   2篇
现状及发展   28篇
研究方法   50篇
综合类   161篇
自然研究   8篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   27篇
  2011年   40篇
  2010年   6篇
  2009年   2篇
  2008年   23篇
  2007年   27篇
  2006年   18篇
  2005年   24篇
  2004年   23篇
  2003年   17篇
  2002年   18篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1980年   1篇
  1971年   1篇
  1966年   1篇
  1965年   2篇
  1959年   4篇
  1958年   2篇
排序方式: 共有251条查询结果,搜索用时 46 毫秒
241.
Little is known of the genetic architecture of cancer at the subclonal and single-cell level or in the cells responsible for cancer clone maintenance and propagation. Here we have examined this issue in childhood acute lymphoblastic leukaemia in which the ETV6-RUNX1 gene fusion is an early or initiating genetic lesion followed by a modest number of recurrent or 'driver' copy number alterations. By multiplexing fluorescence in situ hybridization probes for these mutations, up to eight genetic abnormalities can be detected in single cells, a genetic signature of subclones identified and a composite picture of subclonal architecture and putative ancestral trees assembled. Subclones in acute lymphoblastic leukaemia have variegated genetics and complex, nonlinear or branching evolutionary histories. Copy number alterations are independently and reiteratively acquired in subclones of individual patients, and in no preferential order. Clonal architecture is dynamic and is subject to change in the lead-up to a diagnosis and in relapse. Leukaemia propagating cells, assayed by serial transplantation in NOD/SCID IL2Rγ(null) mice, are also genetically variegated, mirroring subclonal patterns, and vary in competitive regenerative capacity in vivo. These data have implications for cancer genomics and for the targeted therapy of cancer.  相似文献   
242.
DNA double-strand breaks (DSBs) are generated by the recombination activating gene (RAG) endonuclease in all developing lymphocytes as they assemble antigen receptor genes. DNA cleavage by RAG occurs only at the G1 phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening before their repair by classical non-homologous end-joining (NHEJ). Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently. Here, in vivo, we show that in murine cells the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1 (mediator of DNA damage checkpoint 1), which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ataxia telangiectasia mutated (ATM) kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle, in which it is essential for homology-mediated repair. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and show significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes, thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.  相似文献   
243.
244.
Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.  相似文献   
245.
Ives AR  Einarsson A  Jansen VA  Gardarsson A 《Nature》2008,452(7183):84-87
Complex dynamics are often shown by simple ecological models and have been clearly demonstrated in laboratory and natural systems. Yet many classes of theoretically possible dynamics are still poorly documented in nature. Here we study long-term time-series data of a midge, Tanytarsus gracilentus (Diptera: Chironomidae), in Lake Myvatn, Iceland. The midge undergoes density fluctuations of almost six orders of magnitude. Rather than regular cycles, however, these fluctuations have irregular periods of 4-7 years, indicating complex dynamics. We fit three consumer-resource models capable of qualitatively distinct dynamics to the data. Of these, the best-fitting model shows alternative dynamical states in the absence of environmental variability; depending on the initial midge densities, the model shows either fluctuations around a fixed point or high-amplitude cycles. This explains the observed complex population dynamics: high-amplitude but irregular fluctuations occur because stochastic variability causes the dynamics to switch between domains of attraction to the alternative states. In the model, the amplitude of fluctuations depends strongly on minute resource subsidies into the midge habitat. These resource subsidies may be sensitive to human-caused changes in the hydrology of the lake, with human impacts such as dredging leading to higher-amplitude fluctuations. Tanytarsus gracilentus is a key component of the Myvatn ecosystem, representing two-thirds of the secondary productivity of the lake and providing vital food resources to fish and to breeding bird populations. Therefore the high-amplitude, irregular fluctuations in midge densities generated by alternative dynamical states dominate much of the ecology of the lake.  相似文献   
246.
HITS-CLIP yields genome-wide insights into brain alternative RNA processing   总被引:2,自引:0,他引:2  
Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.  相似文献   
247.
248.
Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.  相似文献   
249.
250.
An important step towards understanding the evolution of terrestriality in vertebrates is to identify how the aquatic ancestors of tetrapods were able to access ground-based prey. We have discovered that the 'eel catfish' Channallabes apus, an inhabitant of the muddy swamps of tropical Africa, has a remarkable ability to forage and capture prey on land. The animal's capacity to bend its head down towards the ground while feeding seems to be an essential feature that may have enabled fish to make the transition from an aquatic to a terrestrial mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号