首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   4篇
  国内免费   1篇
系统科学   1篇
理论与方法论   1篇
现状及发展   40篇
研究方法   24篇
综合类   82篇
  2021年   3篇
  2018年   4篇
  2017年   6篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   2篇
  2008年   16篇
  2007年   13篇
  2006年   9篇
  2005年   12篇
  2004年   7篇
  2003年   6篇
  2002年   13篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1994年   1篇
  1985年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1948年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
141.
Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.  相似文献   
142.
果蝇精子发生中CG15899的基因表达   总被引:1,自引:0,他引:1       下载免费PDF全文
为了检测在雄性果蝇中CG15899基因是否有特殊的表达,利用PCR的方法得到CG15899的基因片段,并用DIG标记PCR产物,将其与野生型雄性果蝇melanogaster的精巢进行原位杂交,最后在果蝇精巢的细胞质中产生了较强的信号.实验结果表明,CG15899基因在精原细胞和初级精母细胞中表达.  相似文献   
143.
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance—and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.  相似文献   
144.
The chemical variability of the intestinal lumen requires the presence of molecular receptors detecting the various substances naturally occurring in the diet and as a result of the activity of the microbiota. Despite their early discovery, intestinal bitter taste receptors (Tas2r) have not yet been assigned an unambiguous physiological function. Recently, using a CRE-recombinant approach we showed that the Tas2r131 gene is expressed in a subset of mucin-producing goblet cells in the colon of mice. Moreover, we also demonstrated that the expression of the Tas2r131 locus is not restricted to this region. In the present study we aimed at characterizing the presence of positive cells also in other gastrointestinal regions. Our results show that Tas2r131+ cells appear in the jejunum and the ileum, and are absent from the stomach and the duodenum. We identified the positive cells as a subpopulation of deep-crypt Paneth cells in the ileum, strengthening the notion of a defensive role for Tas2rs in the gut. To get a broader perspective on the expression of bitter taste receptors in the alimentary canal, we quantified the expression of all 35 Tas2r genes along the gastrointestinal tract by qRT-PCR. We discovered that the number and expression level of Tas2r genes profoundly vary along the alimentary canal, with the stomach and the colon expressing the largest subsets.  相似文献   
145.
The non-receptor tyrosine kinase Syk is a well-characterized hematopoietic signal transducer, which is also expressed in non-hematopoietic cells. In epithelial cells, the function of Syk is not wholly known. It interacts with the receptor tyrosine kinase DDR1 and is frequently lost from metastatic mammary tumors. Here, using genetic tracing, we demonstrate Syk expression in murine mammary epithelium, myoepithelium and skin epithelium, but not in intestinal or lung epithelia. Investigating possible functions of Syk, we found a substantial suppression of cell mobility that depended on Syk kinase activity in trans-well migration and wounding assays. Co-expression of DDR1 resulted in constitutive interaction and strong activation of Syk kinase. Most importantly, Syk-mediated migration inhibition was blocked in the presence of DDR1, while conversely DDR1 knockdown restored migration inhibition. Our study identifies Syk as a potent inhibitor of epithelial migration and describes a first functional consequence of the interaction with the collagen receptor DDR1.  相似文献   
146.
The non-mevalonate pathway of isoprenoid (terpenoid) biosynthesis is essential in many eubacteria including the major human pathogen, Mycobacterium tuberculosis, in apicomplexan protozoa including the Plasmodium spp. causing malaria, and in the plastids of plants. The metabolic route is absent in humans and is therefore qualified as a promising target for new anti-infective drugs and herbicides. Biochemical and structural knowledge about all enzymes involved in the pathway established the basis for discovery and development of inhibitors by high-throughput screening of compound libraries and/or structure-based rational design.  相似文献   
147.
148.
Autosomal recessive severe congenital neutropenia (SCN) constitutes a primary immunodeficiency syndrome associated with increased apoptosis in myeloid cells, yet the underlying genetic defect remains unknown. Using a positional cloning approach and candidate gene evaluation, we identified a recurrent homozygous germline mutation in HAX1 in three pedigrees. After further molecular screening of individuals with SCN, we identified 19 additional affected individuals with homozygous HAX1 mutations, including three belonging to the original pedigree described by Kostmann. HAX1 encodes the mitochondrial protein HAX1, which has been assigned functions in signal transduction and cytoskeletal control. Here, we show that HAX1 is critical for maintaining the inner mitochondrial membrane potential and protecting against apoptosis in myeloid cells. Our findings suggest that HAX1 is a major regulator of myeloid homeostasis and underline the significance of genetic control of apoptosis in neutrophil development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号