首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   0篇
系统科学   4篇
理论与方法论   1篇
现状及发展   31篇
研究方法   21篇
综合类   99篇
自然研究   14篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2012年   15篇
  2011年   26篇
  2010年   2篇
  2009年   1篇
  2008年   16篇
  2007年   16篇
  2006年   10篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1994年   3篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   1篇
  1956年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
91.
Fifty million new infections with Mycobacterium tuberculosis occur annually, claiming 2-3 million lives from tuberculosis worldwide. Despite the apparent lack of significant genetic heterogeneity between strains of M. tuberculosis, there is mounting evidence that considerable heterogeneity exists in molecules important in disease pathogenesis. These differences may manifest in the ability of some isolates to modify the host cellular immune response, thereby contributing to the observed diversity of clinical outcomes. Here we describe the identification and functional relevance of a highly biologically active lipid species-a polyketide synthase-derived phenolic glycolipid (PGL) produced by a subset of M. tuberculosis isolates belonging to the W-Beijing family that show 'hyperlethality' in murine disease models. Disruption of PGL synthesis results in loss of this hypervirulent phenotype without significantly affecting bacterial load during disease. Loss of PGL was found to correlate with an increase in the release of the pro-inflammatory cytokines tumour-necrosis factor-alpha and interleukins 6 and 12 in vitro. Furthermore, the overproduction of PGL by M. tuberculosis or the addition of purified PGL to monocyte-derived macrophages was found to inhibit the release of these pro-inflammatory mediators in a dose-dependent manner.  相似文献   
92.
Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.  相似文献   
93.
Hattori D  Demir E  Kim HW  Viragh E  Zipursky SL  Dickson BJ 《Nature》2007,449(7159):223-227
Neurons are thought to use diverse families of cell-surface molecules for cell recognition during circuit assembly. In Drosophila, alternative splicing of the Down syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 closely related transmembrane proteins of the immunoglobulin superfamily, each comprising one of 19,008 alternative ectodomains linked to one of two alternative transmembrane segments. These ectodomains show isoform-specific homophilic binding, leading to speculation that Dscam proteins mediate cell recognition. Genetic studies have established that Dscam is required for neural circuit assembly, but the extent to which isoform diversity contributes to this process is not known. Here we provide conclusive evidence that Dscam diversity is essential for circuit assembly. Using homologous recombination, we reduced the entire repertoire of Dscam ectodomains to just a single isoform. Neural circuits in these mutants are severely disorganized. Furthermore, we show that it is crucial for neighbouring neurons to express distinct isoforms, but that the specific identity of the isoforms expressed in an individual neuron is unimportant. We conclude that Dscam diversity provides each neuron with a unique identity by which it can distinguish its own processes from those of other neurons, and that this self-recognition is essential for wiring the Drosophila brain.  相似文献   
94.
95.
Cirelli C  Bushey D  Hill S  Huber R  Kreber R  Ganetzky B  Tononi G 《Nature》2005,434(7037):1087-1092
Most of us sleep 7-8 h per night, and if we are deprived of sleep our performance suffers greatly; however, a few do well with just 3-4 h of sleep-a trait that seems to run in families. Determining which genes underlie this phenotype could shed light on the mechanisms and functions of sleep. To do so, we performed mutagenesis in Drosophila melanogaster, because flies also sleep for many hours and, when sleep deprived, show sleep rebound and performance impairments. By screening 9,000 mutant lines, we found minisleep (mns), a line that sleeps for one-third of the wild-type amount. We show that mns flies perform normally in a number of tasks, have preserved sleep homeostasis, but are not impaired by sleep deprivation. We then show that mns flies carry a point mutation in a conserved domain of the Shaker gene. Moreover, after crossing out genetic modifiers accumulated over many generations, other Shaker alleles also become short sleepers and fail to complement the mns phenotype. Finally, we show that short-sleeping Shaker flies have a reduced lifespan. Shaker, which encodes a voltage-dependent potassium channel controlling membrane repolarization and transmitter release, may thus regulate sleep need or efficiency.  相似文献   
96.
Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth. This estimation has been calculated from numerous microscopic cell counts in sediment cores of the Ocean Drilling Program. Because these counts cannot differentiate between dead and alive cells, the population size of living microorganisms is unknown. Here, using ribosomal RNA as a target for the technique known as catalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH), we provide direct quantification of live cells as defined by the presence of ribosomes. We show that a large fraction of the sub-seafloor prokaryotes is alive, even in very old (16 million yr) and deep (> 400 m) sediments. All detectable living cells belong to the Bacteria and have turnover times of 0.25-22 yr, comparable to surface sediments.  相似文献   
97.
Iron is required to produce haem and iron-sulphur (Fe-S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe-S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of grx5 yeast Fe-S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe-S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5' iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe-S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe-S cluster assembly.  相似文献   
98.
黏土中静压沉桩离心模型   总被引:3,自引:0,他引:3  
采用西澳大学室内鼓轮式离心机,在预先固结的高岭黏土中开展不同离心力场(50g,125g及250g,g为重力加速度)条件下的模型压桩试验、T-bar试验和静力触探试验,分析了模型桩在贯入过程、静置稳定过程中桩身径向应力(σr)的变化规律,并对后期桩体拉伸载荷阶段的径向应力变化值(△σr)及桩侧摩阻力变化情况行了探讨,揭示了在不同超固结比(OCRs)黏土中静压桩侧摩阻力的演变特性.在此基础上,通过两种经验公式方法对桩侧摩承载力进行了预测计算和对比分析.研究结果表明:沉桩过程中桩端相对高度(h/B)对桩身径向应力的发展变化有很大的影响,桩身不同位置(h/B)的总径向应力对同一贯入深度而言,存在桩侧径向应力退化现象;基于静力触探试验提出的经验方法,能有效考虑静力触探锥端阻力(qt)和桩端相对高度(h/B)因素的影响,将其应用于黏土沉桩时桩侧摩阻力的预测,可取得与试验实测结果较吻合的结果.研究成果对软土地区静压桩施工与承载力设计具有一定的工程指导意义.  相似文献   
99.
The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity to the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialized filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly (Drosophila melanogaster) orthologues of the major constituents of the slit diaphragm, including nephrin, NEPH1 (also known as KIRREL), CD2AP, ZO-1 (TJP1) and podocin, are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find that the nephrocyte diaphragm is completely lost in flies lacking the orthologues of nephrin or NEPH1-a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in human congenital nephrotic syndrome of the Finnish type, NPHS1) or NEPH1. These changes markedly impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting that the two cell types are evolutionarily related, and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号