首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5359篇
  免费   38篇
  国内免费   39篇
系统科学   640篇
丛书文集   388篇
教育与普及   247篇
理论与方法论   10篇
现状及发展   417篇
研究方法   679篇
综合类   3053篇
自然研究   2篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   16篇
  2013年   10篇
  2012年   290篇
  2011年   357篇
  2010年   94篇
  2009年   32篇
  2008年   304篇
  2007年   328篇
  2006年   474篇
  2005年   522篇
  2004年   386篇
  2003年   340篇
  2002年   299篇
  2001年   256篇
  2000年   400篇
  1999年   114篇
  1998年   52篇
  1997年   27篇
  1996年   21篇
  1995年   30篇
  1994年   38篇
  1993年   56篇
  1992年   42篇
  1991年   33篇
  1990年   24篇
  1989年   29篇
  1988年   18篇
  1987年   18篇
  1986年   29篇
  1985年   19篇
  1984年   13篇
  1983年   23篇
  1982年   20篇
  1981年   15篇
  1980年   12篇
  1979年   10篇
  1971年   9篇
  1970年   19篇
  1966年   7篇
  1959年   90篇
  1958年   124篇
  1957年   101篇
  1956年   99篇
  1955年   75篇
  1954年   78篇
  1948年   16篇
  1946年   6篇
排序方式: 共有5436条查询结果,搜索用时 31 毫秒
991.
The developmental and evolutionary mechanisms behind the emergence of human-specific brain features remain largely unknown. However, the recent ability to compare our genome to that of our closest relative, the chimpanzee, provides new avenues to link genetic and phenotypic changes in the evolution of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other human accelerated regions provide new candidates in the search for uniquely human biology.  相似文献   
992.
993.
994.
Flushing submarine canyons   总被引:3,自引:0,他引:3  
Canals M  Puig P  de Madron XD  Heussner S  Palanques A  Fabres J 《Nature》2006,444(7117):354-357
The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.  相似文献   
995.
Nuclear-magnetic-resonance spectroscopy can determine the three-dimensional structure of proteins in solution. However, its potential has been limited by the difficulty of interpreting NMR spectra in the presence of broadened and overlapping resonance lines and low signal-to-noise ratios. Here we present stereo-array isotope labelling (SAIL), a technique that can overcome many of these problems by applying a complete stereospecific and regiospecific pattern of stable isotopes that is optimal with regard to the quality and information content of the resulting NMR spectra. SAIL uses exclusively chemically and enzymatically synthesized amino acids for cell-free protein expression. We demonstrate for the 17-kDa protein calmodulin and the 41-kDa maltodextrin-binding protein that SAIL offers sharpened lines, spectral simplification without loss of information, and the ability to rapidly collect the structural restraints required to solve a high-quality solution structure for proteins twice as large as commonly solved by NMR. It thus makes a large class of proteins newly accessible to detailed solution structure determination.  相似文献   
996.
Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication.  相似文献   
997.
Kim S  Wong P  Coulombe PA 《Nature》2006,441(7091):362-365
Cell growth, an increase in mass and size, is a highly regulated cellular event. The Akt/mTOR (mammalian target of rapamycin) signalling pathway has a central role in the control of protein synthesis and thus the growth of cells, tissues and organisms. A striking example of a physiological context requiring rapid cell growth is tissue repair in response to injury. Here we show that keratin 17, an intermediate filament protein rapidly induced in wounded stratified epithelia, regulates cell growth through binding to the adaptor protein 14-3-3sigma. Mouse skin keratinocytes lacking keratin 17 (ref. 4) show depressed protein translation and are of smaller size, correlating with decreased Akt/mTOR signalling activity. Other signalling kinases have normal activity, pointing to the specificity of this defect. Two amino acid residues located in the amino-terminal head domain of keratin 17 are required for the serum-dependent relocalization of 14-3-3sigma from the nucleus to the cytoplasm, and for the concomitant stimulation of mTOR activity and cell growth. These findings reveal a new and unexpected role for the intermediate filament cytoskeleton in influencing cell growth and size by regulating protein synthesis.  相似文献   
998.
999.
Daw ND  O'Doherty JP  Dayan P  Seymour B  Dolan RJ 《Nature》2006,441(7095):876-879
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'exploration-exploitation' dilemma, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning (RL) theory, indicates that a dopaminergic, striatal and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical and ethological perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.  相似文献   
1000.
A class of non-precious metal composite catalysts for fuel cells   总被引:2,自引:0,他引:2  
Bashyam R  Zelenay P 《Nature》2006,443(7107):63-66
Fuel cells, as devices for direct conversion of the chemical energy of a fuel into electricity by electrochemical reactions, are among the key enabling technologies for the transition to a hydrogen-based economy. Of several different types of fuel cells under development today, polymer electrolyte fuel cells (PEFCs) have been recognized as a potential future power source for zero-emission vehicles. However, to become commercially viable, PEFCs have to overcome the barrier of high catalyst cost caused by the exclusive use of platinum and platinum-based catalysts in the fuel-cell electrodes. Here we demonstrate a new class of low-cost (non-precious metal)/(heteroatomic polymer) nanocomposite catalysts for the PEFC cathode, capable of combining high oxygen-reduction activity with good performance durability. Without any optimization, the cobalt-polypyrrole composite catalyst enables power densities of about 0.15 W cm(-2) in H2-O2 fuel cells and displays no signs of performance degradation for more than 100 hours. The results of this study show that heteroatomic polymers can be used not only to stabilize the non-precious metal in the acidic environment of the PEFC cathode but also to generate active sites for oxygen reduction reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号