首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4999篇
  免费   24篇
  国内免费   36篇
系统科学   77篇
丛书文集   108篇
教育与普及   195篇
理论与方法论   10篇
现状及发展   302篇
研究方法   691篇
综合类   3674篇
自然研究   2篇
  2019年   6篇
  2017年   5篇
  2014年   7篇
  2012年   364篇
  2011年   426篇
  2010年   94篇
  2009年   20篇
  2008年   335篇
  2007年   421篇
  2006年   369篇
  2005年   428篇
  2004年   379篇
  2003年   367篇
  2002年   333篇
  2001年   277篇
  2000年   407篇
  1999年   103篇
  1998年   16篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   12篇
  1993年   19篇
  1992年   12篇
  1991年   23篇
  1990年   29篇
  1989年   20篇
  1988年   20篇
  1987年   18篇
  1986年   27篇
  1985年   26篇
  1984年   27篇
  1983年   24篇
  1982年   26篇
  1981年   34篇
  1980年   8篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1972年   4篇
  1971年   12篇
  1970年   27篇
  1966年   9篇
  1959年   38篇
  1958年   53篇
  1957年   42篇
  1956年   27篇
  1955年   32篇
  1954年   30篇
  1948年   15篇
排序方式: 共有5059条查询结果,搜索用时 46 毫秒
101.
Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.  相似文献   
102.
Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.  相似文献   
103.
Oxysterols direct immune cell migration via EBI2   总被引:1,自引:0,他引:1  
Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.  相似文献   
104.
105.
106.
107.
Jamming by shear     
Bi D  Zhang J  Chakraborty B  Behringer RP 《Nature》2011,480(7377):355-358
A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.  相似文献   
108.
Agriculture: Beyond food versus fuel   总被引:1,自引:0,他引:1  
Graham-Rowe D 《Nature》2011,474(7352):S6-S8
  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号