首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   0篇
系统科学   1篇
教育与普及   1篇
理论与方法论   1篇
现状及发展   25篇
研究方法   24篇
综合类   127篇
自然研究   4篇
  2019年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   9篇
  2011年   15篇
  2010年   1篇
  2008年   9篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1983年   3篇
  1980年   1篇
  1979年   7篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   8篇
  1974年   4篇
  1973年   2篇
  1972年   6篇
  1971年   4篇
  1970年   8篇
  1969年   2篇
  1968年   3篇
  1967年   5篇
  1966年   2篇
  1965年   2篇
排序方式: 共有183条查询结果,搜索用时 16 毫秒
81.
Cardiomyocytes grow during heart maturation or disease-related cardiac remodeling. We present evidence that the intercalated disc (ID) is integral to both longitudinal and lateral growth: increases in width are accommodated by lateral extension of the plicate tread regions and increases in length by sarcomere insertion within the ID. At the margin between myofibril and the folded membrane of the ID lies a transitional junction through which the thin filaments from the last sarcomere run to the ID membrane and it has been suggested that this junction acts as a proto Z-disc for sarcomere addition. In support of this hypothesis, we have investigated the ultrastructure of the ID in mouse hearts from control and dilated cardiomyopathy (DCM) models, the MLP-null and a cardiac-specific β-catenin mutant, cΔex3, as well as in human left ventricle from normal and DCM samples. We find that the ID amplitude can vary tenfold from 0.2 μm up to a maximum of ~2 μm allowing gradual expansion during heart growth. At the greatest amplitude, equivalent to a sarcomere length, A-bands and thick filaments are found within the ID membrane loops together with a Z-disc, which develops at the transitional junction position. Here, also, the tops of the membrane folds, which are rich in αII spectrin, become enlarged and associated with junctional sarcoplasmic reticulum. Systematically larger ID amplitudes are found in DCM samples. Other morphological differences between mouse DCM and normal hearts suggest that sarcomere inclusion is compromised in the diseased hearts.  相似文献   
82.
Ten distinctive new species of the taxonomically difficult braconine wasp genus Gammabracon Quicke, 1984 are described: G. apicoluteus sp. nov. from Malaysia (Negri); G. curticornis sp. nov. from Malaysia (Negri); G. philippinensis sp. nov. from the Philippines; G. siamensis sp. nov. from Thailand; G. striatus sp. nov. from West Malaysia; G. strandorum sp. nov. from Indonesia (Java), G. subvena sp. nov. from Malaysia (Negri and Sabah); G. townesorum sp. nov. from the Philippines; G. variipennis sp. nov. from Thailand; and G. wegeneri sp. nov. from Indonesia. Myosoma forticarinata Cameron, 1902 is transferred to Gammabracon, hence Gammabracon forticarinata comb. nov. A lectotype is designated for Gammabracon erythroura (Cameron). The status of Cratobracon strandiellus (Cameron) is discussed and a new combination proposed, Shelfordia strandiellus Cameron, 1910 comb. nov. (=Bracon strandiellus Cameron). Paucity of discrete morphological variation makes separation of most of the species with orange-red mesosoma, black metasoma and conspicuous back setae currently unrealistic and it may be that there is a single widespread and morphologically variable species.

http://zoobank.org/urn:lsid:zoobank.org:pub:56B8884E-99C8-4B53-9747-D011F552312D  相似文献   

83.
Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.  相似文献   
84.
Allen NJ  Bennett ML  Foo LC  Wang GX  Chakraborty C  Smith SJ  Barres BA 《Nature》2012,486(7403):410-414
In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.  相似文献   
85.
Contrary to the proinflammatory role of mast cells in allergic disorders, the results obtained in this study establish that mast cells are essential in CD4+CD25+Foxp3+ regulatory T (T(Reg))-cell-dependent peripheral tolerance. Here we confirm that tolerant allografts, which are sustained owing to the immunosuppressive effects of T(Reg) cells, acquire a unique genetic signature dominated by the expression of mast-cell-gene products. We also show that mast cells are crucial for allograft tolerance, through the inability to induce tolerance in mast-cell-deficient mice. High levels of interleukin (IL)-9--a mast cell growth and activation factor--are produced by activated T(Reg) cells, and IL-9 production seems important in mast cell recruitment to, and activation in, tolerant tissue. Our data indicate that IL-9 represents the functional link through which activated T(Reg) cells recruit and activate mast cells to mediate regional immune suppression, because neutralization of IL-9 greatly accelerates allograft rejection in tolerant mice. Finally, immunohistochemical analysis clearly demonstrates the existence of this novel T(Reg)-IL-9-mast cell relationship within tolerant allografts.  相似文献   
86.
Most of the polymorphic amino acids of the class I histocompatibility antigen, HLA-A2, are clustered on top of the molecule in a large groove identified as the recognition site for processed foreign antigens. Many residues critical for T-cell recognition of HLA are located in this site, in positions allowing them to serve as ligands to processed antigens. These findings have implications for how the products of the major histocompatibility complex (MHC) recognize foreign antigens.  相似文献   
87.
A J Baines  V Bennett 《Nature》1985,315(6018):410-413
The membrane-associated cytoskeleton is considered to be the apparatus by which cells regulate the properties of their plasma membranes, although recent evidence has indicated additional roles for the proteins of this structure, including an involvement in intracellular transport and exocytosis (see refs 1-3 for review). Of the membrane skeletal proteins, to date only spectrin (fodrin) and ankyrin have been purified and characterized from non-erythroid sources. Protein 4.1 in the red cell is a spectrin-binding protein that enhances the binding of spectrin to actin and can apparently bind to at least one transmembrane protein Immunoreactive forms of 4.1 have been detected in several cell types, including brain. Here we report the purification of brain 4.1 on the basis of its cross-reactivity with erythrocyte 4.1 and spectrin-binding activity. We further show that brain 4.1 is identical to the synaptic vesicle protein, synapsin I, one of the brain's major substrates for cyclic AMP and Ca2+-calmodulin-dependent kinases. Spectrin and synapsin are present in brain homogenates in an approximately 1:1 molar ratio. Although synapsin I has been implicated in synaptic transmission, no activity has been previously ascribed to it.  相似文献   
88.
89.
90.
V Bennett  P J Stenbuck 《Nature》1979,280(5722):468-473
Ankyrin, the membrane attachment protein for human erythrocyte spectrin, is tightly linked in a 1:1 molar ratio with band 3 in detergent extracts of spectrin-depleted membranes. Ankyrin-linked band 3, which represents 10--15% of the total band 3, spans the membrane, and is nearly identical to the major band 3 by peptide analysis. Spectrin binds to solubilised ankyrin-linked band 3, but not to free band 3. A portion of band 3 remains firmly associated with detergent-extracted cytoskeletal proteins. It is concluded that a fraction of band 3 is attached to the erythrocyte cytoskeleton through association with ankyrin, which in turn is bound to spectrin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号