首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Alzheimer's disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide.  相似文献   

2.
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer’s and Parkinson’s diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.  相似文献   

3.
Parkinson’s disease (PD) is characterized by the death of dopaminergic neurons and the presence of Lewy bodies in the substantia nigra pars compacta. The mechanisms involved in the death of neurons as well as the role of Lewy bodies in the pathogenesis of the disease are still unclear. Lewy bodies are made of aggregated proteins, in which α-synuclein represents their major component. α-Synuclein interacts with synphilin-1, a protein that is also present in Lewy bodies. When expressed in cells, synphilin-1 forms inclusions together with α-synuclein that resemble Lewy bodies. Synphilin-1 is ubiquitylated by various E3 ubiquitin-ligases, such as SIAH, parkin and dorfin. Ubiquitylation of synphilin-1 by SIAH is essential for its aggregation into inclusions. We recently identified a new synphilin-1 isoform, synphilin-1A, that is toxic to neurons, aggregation-prone and accumulates in detergent-insoluble fractions of brains from α-synucleinopathy patients. Synphilin-1A inclusions recruit both α-synuclein and synphilin-1. Aggregation of synphilin-1 and synphilin-1A seems to be protective to cells. We now discuss several aspects of the neurobiology and pathology of synphilin-1 isoforms, focusing on possible implications for PD. Received 26 July 2007; received after revision 19 September 2007; accepted 15 October 2007  相似文献   

4.
Molecular and functional heterogeneity of GABAergic synapses   总被引:1,自引:1,他引:0  
Knowledge of the functional organization of the GABAergic system, the main inhibitory neurotransmitter system, in the CNS has increased remarkably in recent years. In particular, substantial progress has been made in elucidating the molecular mechanisms underlying the formation and plasticity of GABAergic synapses. Evidence available ascribes a key role to the cytoplasmic protein gephyrin to form a postsynaptic scaffold anchoring GABA(A) receptors along with other transmembrane proteins and signaling molecules in the postsynaptic density. However, the mechanisms of gephyrin scaffolding remain elusive, notably because gephyrin can auto-aggregate spontaneously and lacks PDZ protein interaction domains found in a majority of scaffolding proteins. In addition, the structural diversity of GABA(A) receptors, which are pentameric channels encoded by a large family of subunits, has been largely overlooked in these studies. Finally, the role of the dystrophin-glycoprotein complex, present in a subset of GABAergic synapses in cortical structures, remains ill-defined. In this review, we discuss recent results derived mainly from the analysis of mutant mice lacking a specific GABA(A) receptor subtype or a core protein of the GABAergic postsynaptic density (neuroligin-2, collybistin), highlighting the molecular diversity of GABAergic synapses and its relevance for brain plasticity and function. In addition, we discuss the contribution of the dystrophin-glycoprotein complex to the molecular and functional heterogeneity of GABAergic synapses.  相似文献   

5.
6.
The utility F-box for protein destruction   总被引:3,自引:1,他引:2  
A signature feature of all living organisms is their utilization of proteins to construct molecular machineries that undertake the complex network of cellular activities. The abundance of a protein element is temporally and spatially regulated in two opposing aspects: de novo synthesis to manufacture the required amount of the protein, and destruction of the protein when it is in excess or no longer needed. One major route of protein destruction is coordinated by a set of conserved molecules, the F-box proteins, which promote ubiquitination in the ubiquitin-proteasome pathway. Here we discuss the functions of F-box proteins in several cellular scenarios including cell cycle progression, synapse formation, plant hormone responses, and the circadian clock. We particularly emphasize the mechanisms whereby F-box proteins recruit specific substrates and regulate their abundance in the context of SCF E3 ligases. For some exceptions, we also review how F-box proteins function through non-SCF mechanisms.  相似文献   

7.
8.
Periostin is a protein that plays a key role in development and repair within the biological matrix of the lung. As a matricellular protein that does not contribute to extracellular matrix structure, periostin interacts with other extracellular matrix proteins to regulate the composition of the matrix in the lung and other organs. In this review, we discuss the studies exploring the role of periostin to date in chronic respiratory diseases, namely asthma and idiopathic pulmonary fibrosis. Asthma is a major health problem globally affecting millions of people worldwide with significant associated morbidity and mortality. Periostin is highly expressed in the lungs of asthmatic patients, contributes to mucus secretion, airway fibrosis and remodeling and is recognized as a biomarker of Th2 high inflammation. Idiopathic pulmonary fibrosis is a fatal interstitial lung disease characterized by progressive aberrant fibrosis of the lung matrix and respiratory failure. It predominantly affects adults over 50 years of age and its incidence is increasing worldwide. Periostin is also highly expressed in the lungs of idiopathic pulmonary fibrosis patients. Serum levels of periostin may predict clinical progression in this disease and periostin promotes myofibroblast differentiation and type 1 collagen production to contribute to aberrant lung fibrosis. Studies to date suggest that periostin is a key player in several pathogenic mechanisms within the lung and may provide us with a useful biomarker of clinical progression in both asthma and idiopathic pulmonary fibrosis.  相似文献   

9.
The accumulation and aggregation of misfolded proteins is the primary hallmark for more than 45 human degenerative diseases. These devastating disorders include Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. Over 15 degenerative diseases are associated with the aggregation of misfolded proteins specifically in the nucleus of cells. However, how the cell safeguards the nucleus from misfolded proteins is not entirely clear. In this review, we discuss what is currently known about the cellular mechanisms that maintain protein homeostasis in the nucleus and protect the nucleus from misfolded protein accumulation and aggregation. In particular, we focus on the chaperones found to localize to the nucleus during stress, the ubiquitin–proteasome components enriched in the nucleus, the signaling systems that might be present in the nucleus to coordinate folding and degradation, and the sites of misfolded protein deposition associated with the nucleus.  相似文献   

10.
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.  相似文献   

11.
Tetratricopeptide repeats (TPRs) are loosely conserved 34-amino acid sequence motifs that have been shown to function as scaffolding structures to mediate protein-protein interactions. TPRs have been identified in a number of proteins with diverse functions and cellular locations. Recent studies suggest that individual TPR motifs can confer specificity in promoting homotypic and/or heterotypic interactions, often in a mutually exclusive manner. These features are best exemplified by the P58IPK protein, an influenza virus-activated cellular inhibitor of the PKR protein kinase, whose different TPR motifs mediate interactions with distinct proteins. P58IPK, which possesses cochaperone and oncogenic properties, represents a unique class of TPR proteins containing a J-domain. Here we review recent progress on the structural and functional characterization of P58IPK, and discuss the possible mechanisms by which P58IPK modulates PKR and induces tumorigenesis in view of present knowledge of TPR proteins and molecular chaperones.  相似文献   

12.
This essay explores an alternative pathway to Alzheimer’s dementia that focuses on damage to small blood vessels rather than late-stage toxic amyloid deposits as the primary pathogenic mechanism that leads to irreversible dementia. While the end-stage pathology of AD is well known, the pathogenic processes that lead to disease are often assumed to be due to toxic amyloid peptides that act on neurons, leading to neuronal dysfunction and eventually neuronal cell death. Speculations as to what initiates the pathogenic cascade have included toxic abeta peptide aggregates, oxidative damage, and inflammation, but none explain why neurons die. Recent high-resolution NMR studies of living patients show that lesions in white matter regions of the brain precede the appearance of amyloid deposits and are correlated with damaged small blood vessels. To appreciate the pathogenic potential of damaged small blood vessels in the brain, it is useful to consider the clinical course and the pathogenesis of CADASIL, a heritable arteriopathy that leads to damaged small blood vessels and irreversible dementia. CADASIL is strikingly similar to early onset AD in that it is caused by germ line mutations in NOTCH 3 that generate toxic protein aggregates similar to those attributed to mutant forms of the amyloid precursor protein and presenilin genes. Since NOTCH 3 mutants clearly damage small blood vessels of white matter regions of the brain that lead to dementia, we speculate that both forms of dementia may have a similar pathogenesis, which is to cause ischemic damage by blocking blood flow or by impeding the removal of toxic protein aggregates by retrograde vascular clearance mechanisms.  相似文献   

13.
Genomic alterations lead to cancer complexity and form a major hurdle for comprehensive understanding of the molecular mechanisms underlying oncogenesis. In this review, we describe recent advances in studying cancer-associated genes from a systems biology point of view. The integration of known cancer genes onto protein and signaling networks reveals the characteristics of cancer genes within networks. This approach shows that cancer genes often function as network hub proteins which are involved in many cellular processes and form focal nodes in information exchange between many signaling pathways. Literature mining allows constructing gene-gene networks, in which new cancer genes can be identified. The gene expression profiles of cancer cells are used for reconstructing gene regulatory networks. By doing so, genes which are involved in the regulation of cancer progression can be picked up from these networks, after which their functions can be further confirmed in the laboratory.  相似文献   

14.
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.  相似文献   

15.
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.  相似文献   

16.
17.
T-cell signal transduction and the role of protein kinase C   总被引:3,自引:0,他引:3  
The T lymphocyte has a vital part to play in maintaining the host response to bacterial and viral infection and also appears to play a key pathological role in autoimmune diseases such as rheumatoid arthritis. In this review, we summarize the signalling pathways which trigger antigen-driven T-cell proliferation and examine the evidence which suggests that protein kinase C (PKC) is fundamental to this process. Finally, we discuss the therapeutic potential that PKC inhibitors may have in the treatment of autoimmune disease. Received 31 March 1998; received after revision 19 May 1998; accepted 19 May 1998  相似文献   

18.
The activation and signalling activity of the membrane μ-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein–protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.  相似文献   

19.
20.
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号