首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nephropathic cystinosis (NC) is a rare disease caused by mutations in the CTNS gene encoding for cystinosin, a lysosomal transmembrane cystine/H+ symporter, which promotes the efflux of cystine from lysosomes to cytosol. NC is the most frequent cause of Fanconi syndrome (FS) in young children, the molecular basis of which is not well established. Proximal tubular cells have very high metabolic rate due to the active transport of many solutes. Not surprisingly, mitochondrial disorders are often characterized by FS. A similar mechanism may also apply to NC. Because cAMP has regulatory properties on mitochondrial function, we have analyzed cAMP levels and mitochondrial targets in CTNS?/? conditionally immortalized proximal tubular epithelial cells (ciPTEC) carrying the classical homozygous 57-kb deletion (delCTNS?/?) or with compound heterozygous loss-of-function mutations (mutCTNS?/?). Compared to wild-type cells, cystinotic cells had significantly lower mitochondrial cAMP levels (delCTNS?/? ciPTEC by 56%?±?10.5, P?<?0.0001; mutCTNS?/? by 26%?±?4.3, P?<?0.001), complex I and V activities, mitochondrial membrane potential, and SIRT3 protein levels, which were associated with increased mitochondrial fragmentation. Reduction of complex I and V activities was associated with lower expression of part of their subunits. Treatment with the non-hydrolysable cAMP analog 8-Br-cAMP restored mitochondrial potential and corrected mitochondria morphology. Treatment with cysteamine, which reduces the intra-lysosomal cystine, was able to restore mitochondrial cAMP levels, as well as most other abnormal mitochondrial findings. These observations were validated in CTNS-silenced HK-2 cells, indicating a pivotal role of mitochondrial cAMP in the proximal tubular dysfunction observed in NC.  相似文献   

2.
Testis-specific PRSS55 is a highly conserved chymotrypsin-like serine protease among mammalian species. So far, the physiological function of PRSS55 remains unknown. Here, we show that PRSS55 is a GPI-anchored membrane protein, specifically expressed in adult mouse testis and mainly observed in the luminal side of seminiferous tubules and sperm acrosome. Mice deficient for Prss55 develop male infertile with normal reproduction-related parameters observed. Interestingly, in vivo fertilization rate of Prss55?/? males is dramatically decreased, possibly due to incapable migration of Prss55?/? sperm from uterus into oviduct. However, in vitro fertilization rate has no difference between two genotypes although Prss55?/? sperm presents defective recognition/binding to zona-intact or zona-free oocytes. Further study reveals that mature ADAM3 is almost undetectable in Prss55?/? sperm, while precursor ADAM3 remains unchanged in the testis. However, it is shown that ADAM3 has no interaction with PRSS55 by immunoprecipitation with anti-PRSS55 antibody. The expression levels of several proteins known to be related to the observed phenotypes remain comparable between wt and Prss55?/? mice. Moreover, we found that Prss55 deficiency has no effect on PRSS37 or vice versa albeit two mutant males share almost the same phenotypes. Microarray analysis reveals a total of 72 differentially expressed genes in Prss55?/? testis, most of which are associated with cellular membrane and organelle organization, protein transport and complex assembly, and response to stimulus and signaling. In conclusion, we have demonstrated that PRSS55 plays vital roles in regulating male fertility of mice, including in vivo sperm migration and in vitro sperm–egg interaction, possibly by affecting the maturation of ADAM3 in sperm and the expression of multiple genes in testis.  相似文献   

3.
Renal tubular epithelial cells are exposed to mechanical forces due to fluid flow shear stress within the lumen of the nephron. These cells respond by activation of mechano-sensors located at the plasma membrane or the primary cilium, having crucial roles in maintenance of cellular homeostasis and signaling. In this paper, we applied fluid shear stress to study TGF-β signaling in renal epithelial cells with and without expression of the Pkd1-gene, encoding a mechano-sensor mutated in polycystic kidney disease. TGF-β signaling modulates cell proliferation, differentiation, apoptosis, and fibrotic deposition, cellular programs that are altered in renal cystic epithelia. SMAD2/3-mediated signaling was activated by fluid flow, both in wild-type and Pkd1 ?/? cells. This was characterized by phosphorylation and nuclear accumulation of p-SMAD2/3, as well as altered expression of downstream target genes and epithelial-to-mesenchymal transition markers. This response was still present after cilia ablation. An inhibitor of upstream type-I-receptors, ALK4/ALK5/ALK7, as well as TGF-β-neutralizing antibodies effectively blocked SMAD2/3 activity. In contrast, an activin-ligand trap was ineffective, indicating that increased autocrine TGF-β signaling is involved. To study potential involvement of MAPK/ERK signaling, cells were treated with a MEK1/2 inhibitor. Surprisingly, fluid flow-induced expression of most SMAD2/3 targets was further enhanced upon MEK inhibition. We conclude that fluid shear stress induces autocrine TGF-β/ALK5-induced target gene expression in renal epithelial cells, which is partially restrained by MEK1/2-mediated signaling.  相似文献   

4.

Aims

G-protein coupled receptor 56 (GPR56) is the most abundant islet-expressed G-protein coupled receptor, suggesting a potential role in islet function. This study evaluated islet expression of GPR56 and its endogenous ligand collagen III, and their effects on β-cell function.

Methods

GPR56 and collagen III expression in mouse and human pancreas sections was determined by fluorescence immunohistochemistry. Effects of collagen III on β-cell proliferation, apoptosis, intracellular calcium ([Ca2+]i) and insulin secretion were determined by cellular BrdU incorporation, caspase 3/7 activities, microfluorimetry and radioimmunoassay, respectively. The role of GPR56 in islet vascularisation and innervation was evaluated by immunohistochemical staining for CD31 and TUJ1, respectively, in pancreases from wildtype (WT) and Gpr56?/? mice, and the requirement of GPR56 for normal glucose homeostasis was determined by glucose tolerance tests in WT and Gpr56?/? mice.

Results

Immunostaining of mouse and human pancreases revealed that GPR56 was expressed by islet β-cells while collagen III was confined to the peri-islet basement membrane and islet capillaries. Collagen III protected β-cells from cytokine-induced apoptosis, triggered increases in [Ca2+]i and potentiated glucose-induced insulin secretion from WT islets but not from Gpr56?/? islets. Deletion of GPR56 did not affect glucose-induced insulin secretion in vitro and it did not impair glucose tolerance in adult mice. GPR56 was not required for normal islet vascularisation or innervation.

Conclusion

We have demonstrated that collagen III improves islet function by increasing insulin secretion and protecting against apoptosis. Our data suggest that collagen III may be effective in optimising islet function to improve islet transplantation outcomes, and GPR56 may be a target for the treatment of type 2 diabetes.
  相似文献   

5.
Vaspin is an adipokine which improves glucose metabolism and insulin sensitivity in obesity. Kallikrein 7 (KLK7) is the first known protease target inhibited by vaspin and a potential target for the treatment of metabolic disorders. Here, we tested the hypothesis that inhibition of KLK7 in adipose tissue may beneficially affect glucose metabolism and adipose tissue function. Therefore, we have inactivated the Klk7 gene in adipose tissue using conditional gene-targeting strategies in mice. Klk7-deficient mice (ATKlk7 ?/?) exhibited less weight gain, predominant expansion of subcutaneous adipose tissue and improved whole body insulin sensitivity under a high fat diet (HFD). ATKlk7 ?/? mice displayed higher energy expenditure and food intake, most likely due to altered adipokine secretion including lower circulating leptin. Pro-inflammatory cytokine expression was significantly reduced in combination with an increased percentage of alternatively activated (anti-inflammatory) M2 macrophages in epigonadal adipose tissue of ATKlk7 ?/?. Taken together, by attenuating adipose tissue inflammation, altering adipokine secretion and epigonadal adipose tissue expansion, Klk7 deficiency in adipose tissue partially ameliorates the adverse effects of HFD-induced obesity. In summary, we provide first evidence for a previously unrecognized role of KLK7 in adipose tissue with effects on whole body energy expenditure and insulin sensitivity.  相似文献   

6.
The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.  相似文献   

7.
MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe ?/?) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe ?/? mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.  相似文献   

8.
Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rarα, and rarβ) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgfβ2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rarβ, meis2, hoxb5, tgfβ2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgfβ2, and id2 spatial distribution; to increase rarβ, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal–distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.  相似文献   

9.
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75NTR receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.  相似文献   

10.
11.
The family of RAF kinases transduces extracellular information to the nucleus, and their activation is crucial for cellular regulation on many levels, ranging from embryonic development to carcinogenesis. B-RAF and C-RAF modulate neurogenesis and neuritogenesis during chicken inner ear development. C-RAF deficiency in humans is associated with deafness in the rare genetic insulin-like growth factor 1 (IGF-1), Noonan and Leopard syndromes. In this study, we show that RAF kinases are expressed in the developing inner ear and in adult mouse cochlea. A homozygous C-Raf deletion in mice caused profound deafness with no evident cellular aberrations except for a remarkable reduction of the K+ channel Kir4.1 expression, a trait that suffices as a cause of deafness. To explore the role of C-Raf in cellular protection and repair, heterozygous C-Raf +/? mice were exposed to noise. A reduced C-RAF level negatively affected hearing preservation in response to noise through mechanisms involving the activation of JNK and an exacerbated apoptotic response. Taken together, these results strongly support a role for C-RAF in hearing protection.  相似文献   

12.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.  相似文献   

13.
14.
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score?=?? 5.146, p?<?0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p?<?0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r?=?? 0.647, p?<?0.05; r?=?? 0.629, p?<?0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.  相似文献   

15.
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer’s disease and Down’s syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ?snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ?snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ?snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.  相似文献   

16.
17.
MicroRNA (miR) are short non-coding RNA sequences of 19–24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.  相似文献   

18.
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号