首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Genomic alterations lead to cancer complexity and form a major hurdle for comprehensive understanding of the molecular mechanisms underlying oncogenesis. In this review, we describe recent advances in studying cancer-associated genes from a systems biology point of view. The integration of known cancer genes onto protein and signaling networks reveals the characteristics of cancer genes within networks. This approach shows that cancer genes often function as network hub proteins which are involved in many cellular processes and form focal nodes in information exchange between many signaling pathways. Literature mining allows constructing gene-gene networks, in which new cancer genes can be identified. The gene expression profiles of cancer cells are used for reconstructing gene regulatory networks. By doing so, genes which are involved in the regulation of cancer progression can be picked up from these networks, after which their functions can be further confirmed in the laboratory.  相似文献   

3.
Screening for differentially expressed genes is a straightforward approach to study the molecular basis for changes in gene expression. Differential display analysis has been used by investigators in diverse fields of research since it was developed. Differential display has also been the approach of choice to investigate changes in gene expression in response to various biological challenges in invertebrates. We review the application of differential display analysis of gene expression in invertebrates, and provide a specific example using this technique for novel gene discovery in the nematode Caenorhabditis elegans.  相似文献   

4.
5.
6.
Heat shock genes exhibit complex patterns of spatial and temporal regulation during embryonic development of a wide range of organisms. Our laboratory has been involved in an analysis of heat shock gene expression in the zebrafish, a model system which is now utilized extensively for the examination of early embryonic development of vertebrates. Members of the zebrafish hsp47, hsp70 and hsp90 gene families have been cloned and shown to be closely related to their counterparts in higher vertebrates. Expression of these genes has been examined using Northern blot and whole mount in situ hybridization analyses. Both the hsp47 and hsp90 genes are expressed in a highly tissue-restricted manner during normal development. The data raise a number of interesting questions regarding the function and regulation of these heat shock genes during early zebrafish development.  相似文献   

7.
8.
9.
10.
11.
12.
Differential display technology: a general guide   总被引:12,自引:0,他引:12  
The 10 years since the invention of differential display technology (DD) has produced a massive amount of literature detailing problems and improvements to the technique, successful gene expression studies and studies done using genes found through the use of DD. In this review we summarise the results of 10 years of research that has focussed on improving DD and discuss how some of the problems associated with DD can be resolved or minimised. In addition to discussing DD, we address issues related to other differential gene expression analysis techniques and try to illustrate how these techniques can be used to complement one's use of DD. This review also serves as an introduction to the taxa-specific DD review articles that are found in this issue.  相似文献   

13.
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.  相似文献   

14.
Although the interdisciplinary nature of contemporary biological sciences has been addressed by philosophers, historians, and sociologists of science, the different ways in which engineering concepts and methods have been applied in biology have been somewhat neglected. We examine – using the mechanistic philosophy of science as an analytic springboard – the transfer of network methods from engineering to biology through the cases of two biology laboratories operating at the California Institute of Technology. The two laboratories study gene regulatory networks, but in remarkably different ways. The research strategy of the Davidson lab fits squarely into the traditional mechanist philosophy in its aim to decompose and reconstruct, in detail, gene regulatory networks of a chosen model organism. In contrast, the Elowitz lab constructs minimal models that do not attempt to represent any particular naturally evolved genetic circuits. Instead, it studies the principles of gene regulation through a template-based approach that is applicable to any kinds of networks, whether biological or not. We call for the mechanists to consider whether the latter approach can be accommodated by the mechanistic approach, and what kinds of modifications it would imply for the mechanistic paradigm of explanation, if it were to address modelling more generally.  相似文献   

15.
16.
The mixed lineage leukemia (MLL) family of genes, also known as the lysine N-methyltransferase 2 (KMT2) family, are homologous to the evolutionarily conserved trithorax group that plays critical roles in the regulation of homeotic gene (HOX) expression and embryonic development. MLL5, assigned as KMT2E on the basis of its SET domain homology, was initially categorized under MLL (KMT2) family together with other six SET methyltransferase domain proteins (KMT2A–2D and 2F–2G). However, emerging evidence suggests that MLL5 is distinct from the other MLL (KMT2) family members, and the protein it encodes appears to lack intrinsic histone methyltransferase (HMT) activity towards histone substrates. MLL5 has been reported to play key roles in diverse biological processes, including cell cycle progression, genomic stability maintenance, adult hematopoiesis, and spermatogenesis. Recent studies of MLL5 variants and isoforms and putative MLL5 homologs in other species have enriched our understanding of the role of MLL5 in gene expression regulation, although the mechanism of action and physiological function of MLL5 remains poorly understood. In this review, we summarize recent research characterizing the structural features and biological roles of MLL5, and we highlight the potential implications of MLL5 dysfunction in human disease.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号