首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.  相似文献   

2.
This essay examines Friedman׳s recent approach to the analysis of physical theories. Friedman argues against Quine that the identification of certain principles as ‘constitutive’ is essential to a satisfactory methodological analysis of physics. I explicate Friedman׳s characterization of a constitutive principle, and I evaluate his account of the constitutive principles that Newtonian and Einsteinian gravitation presuppose for their formulation. I argue that something close to Friedman׳s thesis is defensible.  相似文献   

3.
The symmetries of a physical theory are often associated with two things: conservation laws (via e.g. Noether׳s and Schur׳s theorems) and representational redundancies (“gauge symmetry”). But how can a physical theory׳s symmetries give rise to interesting (in the sense of non-trivial) conservation laws, if symmetries are transformations that correspond to no genuine physical difference? In this paper, I argue for a disambiguation in the notion of symmetry. The central distinction is between what I call “analytic” and “synthetic“ symmetries, so called because of an analogy with analytic and synthetic propositions. “Analytic“ symmetries are the turning of idle wheels in a theory׳s formalism, and correspond to no physical change; “synthetic“ symmetries cover all the rest. I argue that analytic symmetries are distinguished because they act as fixed points or constraints in any interpretation of a theory, and as such are akin to Poincaré׳s conventions or Reichenbach׳s ‘axioms of co-ordination’, or ‘relativized constitutive a priori principles’.  相似文献   

4.
A part of the revival of interest in Mach׳s principle since the early 1960s has involved work by physicists aimed at calculating various sorts of frame-dragging effects by matter shells surrounding an interior region, and arguing that under certain conditions or in certain limits (ideally, ones that can be viewed as plausibly similar to conditions in our cosmos) the frame dragging becomes “complete” (e.g. Lynden-Bell, Katz, & Bičák, 1995) . Such results can bolster the argument for the satisfaction of Mach׳s principle by certain classes of models of GR. Interestingly, the frame-dragging “effect” of (say) a rotational movement of cosmic matter around a central point is argued by these physicists to be instantaneous—not an effect propagating at the speed of light. Not all physicists regard this as unproblematic. But rather than exploring whether there is something unphysical about such instantaneous “action at a distance”, or a violation of the precepts of Special Relativity, I am interested in exploring whether these physicists׳ calculations should be thought of as showing local inertia (resistance to acceleration) to be an effect, with distant matter distributions being the cause. I will try to apply some leading philosophical accounts of causation to the physical models of frame dragging, to see whether they imply that the frame dragging is superluminal causation. I will then offer reflections on the difficulties of applying causal talk in physical theories.  相似文献   

5.
The radiation that is due to the braking of charged particles has been in the focus of theoretical physics since the discovery of X-rays by the end of the 19th century. The impact of cathode rays in the anti-cathode of an X-ray tube that resulted in the production of X-rays led to the view that X-rays are aether impulses spreading from the site of the impact. In 1909, Arnold Sommerfeld calculated from Maxwell׳s equations the angular distribution of electromagnetic radiation due to the braking of electrons. He thereby coined the notion of “Bremsstrahlen.” In 1923, Hendrik A. Kramers provided a quantum theoretical explanation of this process by means of Bohr׳s correspondence principle. With the advent of quantum mechanics the theory of bremsstrahlung became a target of opportunity for theorists like Yoshikatsu Sugiura, Robert Oppenheimer, and–again–Sommerfeld, who presented in 1931 a comprehensive treatise on this subject. Throughout the 1930s, Sommerfeld׳s disciples in Munich and elsewhere extended and improved the bremsstrahlen theory. Hans Bethe and Walter Heitler, in particular, in 1934 presented a theory that was later regarded as “the most important achievement of QED in the 1930s” (Freeman Dyson). From a historical perspective the bremsstrahlen problem may be regarded as a probe for the evolution of theories in response to revolutionary changes in the underlying principles.  相似文献   

6.
What if gravity satisfied the Klein–Gordon equation? Both particle physics from the 1920–30s and the 1890s Neumann–Seeliger modification of Newtonian gravity with exponential decay suggest considering a “graviton mass term” for gravity, which is algebraic in the potential. Unlike Nordström׳s “massless” theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman–Cunningham conformal group. It therefore exhibits the whole of Minkowski space–time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein׳s principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the ‘true’ geometry, one might wonder, in line with Poincaré׳s modal conventionality argument? Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress–energy׳s trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers–Pirani–Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities—indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein׳s equations along the lines of Einstein׳s newly re-appreciated “physical strategy” and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam–Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th–21st century space–time philosophy in the light of particle physics. An appendix reconsiders the Malament–Weatherall–Manchak conformal restriction of conventionality and constructs the ‘universal force’ influencing the causal structure.Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space–time theory that would have blocked Moritz Schlick׳s supposed refutation of synthetic a priori knowledge, and how Einstein׳s false analogy between the Neumann–Seeliger–Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.  相似文献   

7.
This paper is concerned with Friedman׳s recent revival of the notion of the relativized a priori. It is particularly concerned with addressing the question as to how Friedman׳s understanding of the constitutive function of the a priori has changed since his defence of the idea in his Dynamics of Reason. Friedman׳s understanding of the a priori remains influenced by Reichenbach׳s initial defence of the idea; I argue that this notion of the a priori does not naturally lend itself to describing the historical development of space-time physics. Friedman׳s analysis of the role of the rotating frame thought experiment in the development of general relativity – which he suggests made the mathematical possibility of four-dimensional space-time a genuine physical possibility – has a central role in his argument. I analyse this thought experiment and argue that it is better understood by following Cassirer and placing emphasis on regulative principles. Furthermore, I argue that Cassirer׳s Kantian framework enables us to capture Friedman׳s key insights into the nature of the constitutive a priori.  相似文献   

8.
An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether׳s 1918 paper developed Hilbert׳s and Klein׳s reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a ‘curl’ term with identically zero divergence. Noether proved a converse “Hilbertian assertion”: such “improper” conservation laws imply a generally covariant action.Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom (“ghosts”) for stability, along with universal coupling: all energy-momentum including gravity׳s serves as a source for gravity. Those assumptions (all but) imply (for 0 graviton mass) that the energy-momentum is only a term proportional to the field equations and a symmetric “curl,” which implies the coalescence of the flat background geometry and the gravitational potential into an effective curved geometry. The flat metric, though useful in Rosenfeld׳s stress-energy definition, disappears from the field equations. Thus the particle physics derivation uses a reinvented Noetherian converse Hilbertian assertion in Rosenfeld-tinged form.The Rosenfeld stress-energy is identically the canonical stress-energy plus a Belinfante curl and terms proportional to the field equations, so the flat metric is only a convenient mathematical trick without ontological commitment. Neither generalized relativity of motion, nor the identity of gravity and inertia, nor substantive general covariance is assumed. The more compelling criterion of lacking ghosts yields substantive general covariance as an output. Hence the particle physics derivation, though logically impressive, is neither as novel nor as ontologically laden as it has seemed.  相似文献   

9.
In recent years, a “change in attitude” in particle physics has led to our understanding current quantum field theories as effective field theories (EFTs). The present paper is concerned with the significance of this EFT approach, especially from the viewpoint of the debate on reductionism in science. In particular, I shall show how EFTs provide a new and interesting case study in current philosophical discussion on reduction, emergence, and inter-level relationships in general.  相似文献   

10.
We distinguish two orientations in Weyl's analysis of the fundamental role played by the notion of symmetry in physics, namely an orientation inspired by Klein's Erlangen program and a phenomenological-transcendental orientation. By privileging the former to the detriment of the latter, we sketch a group(oid)-theoretical program—that we call the Klein-Weyl program—for the interpretation of both gauge theories and quantum mechanics in a single conceptual framework. This program is based on Weyl's notion of a “structure-endowed entity” equipped with a “group of automorphisms”. First, we analyze what Weyl calls the “problem of relativity” in the frameworks provided by special relativity, general relativity, and Yang-Mills theories. We argue that both general relativity and Yang-Mills theories can be understood in terms of a localization of Klein's Erlangen program: while the latter describes the group-theoretical automorphisms of a single structure (such as homogenous geometries), local gauge symmetries and the corresponding gauge fields (Ehresmann connections) can be naturally understood in terms of the groupoid-theoretical isomorphisms in a family of identical structures. Second, we argue that quantum mechanics can be understood in terms of a linearization of Klein's Erlangen program. This stance leads us to an interpretation of the fact that quantum numbers are “indices characterizing representations of groups” ((Weyl, 1931a), p.xxi) in terms of a correspondence between the ontological categories of identity and determinateness.  相似文献   

11.
Mathematical invariances, usually referred to as “symmetries”, are today often regarded as providing a privileged heuristic guideline for understanding natural phenomena, especially those of micro-physics. The rise of symmetries in particle physics has often been portrayed by physicists and philosophers as the “application” of mathematical invariances to the ordering of particle phenomena, but no historical studies exist on whether and how mathematical invariances actually played a heuristic role in shaping microphysics. Moreover, speaking of an “application” of invariances conflates the formation of concepts of new intrinsic degrees of freedom of elementary particles with the formulation of models containing invariances with respect to those degrees of freedom. I shall present here a case study from early particle physics (ca. 1930–1954) focussed on the formation of one of the earliest concepts of a new degree of freedom, baryon number, and on the emergence of the invariance today associated to it. The results of the analysis show how concept formation and “application” of mathematical invariances were distinct components of a complex historical constellation in which, beside symmetries, two further elements were essential: the idea of physically conserved quantities and that of selection rules. I shall refer to the collection of different heuristic strategies involving selection rules, invariances and conserved quantities as the “SIC-triangle” and show how different authors made use of them to interpret the wealth of new experimental data. It was only a posteriori that the successes of this hybrid “symmetry heuristics” came to be attributed exclusively to mathematical invariances and group theory, forgetting the role of selection rules and of the notion of physically conserved quantity in the emergence of new degrees of freedom and new invariances. The results of the present investigation clearly indicate that opinions on the role of symmetries in fundamental physics need to be critically reviewed in the spirit of integrated history and philosophy of science.  相似文献   

12.
In a letter to Weyl, Becker proposed a new way to solve the problem of space in the relativistic context. This is the result of Becker׳s encounter with the two traditions of thinking about space: Husserlian transcendental phenomenology and Blaschke׳s equiaffine differential geometry. I reconstruct the mathematical content of the Becker–Blaschke solution to the problem of space and highlight the philosophical ideas that guide this construction. This permits me to underline some common properties of Riemannian and Minkowskian manifolds in terms of an unusual notion of isotropy. Finally, I will use this construction as a support to analyze several philosophical differences between Weyl׳s and Becker׳s proposals.  相似文献   

13.
Niels Bohr׳s doctrine of the primacy of “classical concepts” is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr׳s doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the “cut” between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr׳s doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr׳s doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum–classical transition that were pursued by several of Bohr׳s followers and culminated in the development of decoherence theory.  相似文献   

14.
In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a “weak” version and a “strong” version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. Cambridge: MIT Press) has dubbed Maxwellian spacetime. This suggests that there are also two versions of Newtonian gravity in flat spacetime—a “weak” version in Maxwellian spacetime, and a “strong” version in Neo-Newtonian spacetime. I conclude by indicating how these alternative formulations of Newtonian gravity impact the notion of empirical indistinguishability and the debate over scientific realism.  相似文献   

15.
Sidney Dancoff׳s paper “On Radiative Corrections for Electron Scattering” is generally viewed in the secondary literature as a failed attempt to develop renormalized quantum electrodynamics (QED) a decade early, an attempt that failed because of a mistake that Dancoff made. I will discuss Dancoff׳s mistake and try to reconstruct why it occurred, by relating it to the usual practices of the quantum field theory of his time. I will also argue against the view that Dancoff was on the verge of developing renormalized QED and will highlight the conceptual divides that separate Dancoff׳s work from the QED of the late 1940s. I will finally discuss how the established view of Dancoff׳s paper came to be and how the reading of this specific anecdote relates to more general assessments of the conceptual advances of the late 1940s (covariant techniques, renormalization), in particular to their assessment as being conservative rather than revolutionary.  相似文献   

16.
This paper analyses the practice of model-building “beyond the Standard Model” in contemporary high-energy physics and argues that its epistemic function can be grasped by regarding models as mediating between the phenomenology of the Standard Model and a number of “theoretical cores” of hybrid character, in which mathematical structures are combined with verbal narratives (“stories”) and analogies referring back to empirical results in other fields (“empirical references”). Borrowing a metaphor from a physics research paper, model-building is likened to the search for a Rosetta stone, whose significance does not lie in its immediate content, but rather in the chance it offers to glimpse at and manipulate the components of hybrid theoretical constructs. I shall argue that the rise of hybrid theoretical constructs was prompted by the increasing use of nonrigorous mathematical heuristics in high-energy physics. Support for my theses will be offered in form of a historical–philosophical analysis of the emergence and development of the theoretical core centring on the notion that the Higgs boson is a composite particle. I will follow the heterogeneous elements which would eventually come to form this core from their individual emergence in the 1960s and 1970s, through their collective life as a theoretical core from 1979 until the present day.  相似文献   

17.
In the early days of general relativity, several of Einstein׳s readers misunderstood the role of coordinates or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein׳s first systematic exposition of his theory. A few of Einstein׳s followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement.  相似文献   

18.
In this paper I draw the distinction between intuitive and theory-relative accounts of the time reversal symmetry and identify problems with each. I then propose an alternative to these two types of accounts that steers a middle course between them and minimizes each account׳s problems. This new account of time reversal requires that, when dealing with sets of physical theories that satisfy certain constraints, we determine all of the discrete symmetries of the physical laws we are interested in and look for involutions that leave spatial coordinates unaffected and that act consistently across our physical laws. This new account of time reversal has the interesting feature that it makes the nature of the time reversal symmetry an empirical feature of the world without requiring us to assume that any particular physical theory is time reversal invariant from the start. Finally, I provide an analysis of several toy cases that reveals differences between my new account of time reversal and its competitors.  相似文献   

19.
Complementarity has frequently, but mistakenly, been conflated with wave-particle duality, and this conflation has led to pervasive misunderstandings of Bohr's views and several misguided claims of an experimental “disproof” of complementarity. In this paper, I explain what Bohr meant by complementarity, and how this is related to, but distinct from, wave-particle duality. I list a variety of possible meanings of wave-particle duality, and canvass the ways in which they are (or are not) supported by quantum physics and Bohr's interpretation. I also examine the extent to which wave-particle duality should be viewed as an example of the sort of dualities one finds in, e.g., string theory. I argue that the most fruitful way of reading of Bohr's account complementarity is by comparing it to current accounts of effective theories with limited domains of applicability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号