首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A histological study of the carnation-light lethal focus revealed morphological abnormalities in brain tissue. The ratio of core width to total brain width and brain texture consistently differed between lethal (car-lt) and their non-lethal sibs.  相似文献   

2.
Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less ‘traditional’ functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series. Most functions of VEGF that are essential for proper brain development are, in fact, dispensable in the adult brain as was clearly demonstrated using a conditional brain-specific VEGF loss-of-function (LOF) approach. Thus, in contrast to VEGF LOF in the developing brain, a process which is detrimental for the growth and survival of blood vessels and leads to massive neuronal apoptosis [24], continued signaling by VEGF in the mature brain is no longer required for maintaining already established cerebral vasculature and its inhibition does not cause appreciable vessel regression, hypoxia or apoptosis [47]. Yet, VEGF continues to be expressed in the adult brain in a constitutive manner. Moreover, VEGF is expressed in the adult brain in a region-specific manner and in distinctive spatial patterns incompatible with an angiogenic role (see below), strongly suggesting angiogenesis-independent and possibly also perfusion-independent functions. Here we review current knowledge on some of these ‘non-traditional’, often unexpected homeostatic VEGF functions, including those unrelated to its effects on the brain vasculature. These effects could be mediated directly (on non-vascular cells expressing cognate VEGF receptors) or indirectly (via the endothelium). Experimental approaches aimed at distinguishing between these possibilities for each particular VEGF function will be described. This review is only concerned with homeostatic functions of VEGF in the normal, non-injured brain. The reader is referred elsewhere in this series for a review on VEGF actions in response to various forms of brain injury and/or brain pathology.  相似文献   

3.
Summary Short term in vitro experiments on the influence of the extracts of corpora allata and brain from the termite queenOdontotermes assmuthi on the lipid release from the fat body into the haemolymph indicated that the extract of corpora allata does not influence the lipid mobilization, whereas the brain extract increases the free fatty acid level in the haemolymph. It is believed that the brain extract stimulates triglyceride hydrolysis in the fat body.  相似文献   

4.
Antiepileptic drugs and the developing brain   总被引:3,自引:0,他引:3  
Epilepsy is the most common neurological disorder in young humans. Antiepileptic drugs (AEDs) which are used to treat seizures in infants, children and pregnant women can cause cognitive impairment, microcephaly and birth defects. Ion channels, neurotransmitters and second messenger systems constitute molecular targets of AEDs. The same targets regulate brain processes essential both for propagation of seizures and for learning, memory and emotional behavior. Thus, AEDs can influence brain function and brain development in undesired ways. Here we review mechanisms of action of AEDs, examine clinical evidence for their adverse effects in the developing human brain, and present studies on cognitive and behavioral effects in animal models. Furthermore, we discuss mechanisms responsible for adverse effects of AEDs in the developing mammalian brain, including interference with cell proliferation and migration, axonal arborization, synaptogenesis, synaptic plasticity and physiological apoptotic cell death. Received 3 August 2005; received after revision 13 October 2005; accepted 1 November 2005  相似文献   

5.
Cardioactive peptides of the CNS of the pulmonate snailLymnaea stagnalis   总被引:1,自引:0,他引:1  
Summary In the pulmonate snailLymnaea stagnalis the cardioactive effects (tested on isolated auricles) of acetylcholine (ACh), 5-hydroxytryptamine (5-HT), the bivalve tetrapeptide FMRFamide, and of chromatographically separated snail brain substances have been established. Besides ACh and 5-HT, in brain extracts, small FMRFamide-like and large cardioexcitatory peptides were found.  相似文献   

6.
The brain is remarkable for its complex organization and functions, which have been historically assumed to arise from cells with identical genomes. However, recent studies have shown that the brain is in fact a complex genetic mosaic of aneuploid and euploid cells. The precise function of neural aneuploidy and mosaicism are currently being examined on multiple fronts that include contributions to cellular diversity, cellular signaling and diseases of the central nervous system (CNS). Constitutive aneuploidy in genetic diseases has proven roles in brain dysfunction, as observed in Down syndrome (trisomy 21) and mosaic variegated aneuploidy. The existence of aneuploid cells within normal individuals raises the possibility that these cells might have distinct functions in the normal and diseased brain, the latter contributing to sporadic CNS disorders including cancer. Here we review what is known about neural aneuploidy, and offer speculations on its role in diseases of the brain. Received 13 April 2006; received after revision 2 June 2006; accepted 13 July 2006  相似文献   

7.
Several serine proteases including thrombin, tissue-type plasminogen activator and urokinase-type plasminogen activator have been well characterized in the brain. In this article, we review the brain-related trypsin and trypsin-like serine proteases. Accumulating evidence demonstrates that trypsin and trypsin-like serine proteases play very important roles in neural development, plasticity, neurodegeneration and neuroregeneration in the brain. Neuropsin is able to hydrolyze the extracellular matrix components by its active site serine, and regulates learning and memory in normal brain. The mutant neurotrypsin contributes to mental retardation in children. Neurosin seems to be involved in the pathogenesis of neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease or multiple sclerosis. Although mesotrypsin/trypsin IV is also implicated in neurodegeneration, its functional significance still remains largely unknown. Particularly, mesotrypsin/trypsin IV, P22 and neurosin exert their physiological and pathological functions through activation of certain protease-activated receptors (PARs). In the brain, the presence of serpins controls the activity of serine proteases. Therefore, understanding the interaction among brain trypsin, serpins and PARs will provide invaluable tools for regulating normal brain functions and for the clinical treatment of neural disorders. Y. Wang, W. Luo: These authors made equal contributions. Received 26 June 2007; received after revision 13 August 2007; accepted 12 September 2007  相似文献   

8.
Summary The activity levels of succinate dehydrogenase, glutamate dehydrogenase and pyruvate dehydrogenase in the fore, mid and hind brain regions of the thiamine deficient chicken,Gallus domesticus were determined. The activity levels of scccinate dehydrogenase and glutamate dehydrogenase in all the 3 regions of brain showed augmentation on inducing thiamine deficiency. In contrast the activity levels of pyruvate dehydrogenase decreased in the brain of thiamine deficient animals. It is suggested that these changes in the oxidative enzymes indicate disturbance caused in the operation of the tricarboxylic acid cycle in thiamine deficiency.  相似文献   

9.
Summary The omentum of 13 rats were removed from the abdomen and placed directly on the brain. 5–14 days later the omentum and the underlying brain were joined by numerous vascular anastomoses in 9 rats. The purpose of this work was to study the use of omentum to establish extracranial vascularization of the brain.Supported by funds from Grant RR 514 from the Jefferson Medical College General Research Fund.  相似文献   

10.
The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. Received 1 November 2005; received after revision 11 January 2006; accepted 25 January 2006  相似文献   

11.
Summary Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were determined in several brain regions of normal and streptozotocin-induced diabetic rats. The diabetic rats exhibited significant increase in ChAT activity (p<0.05) in all brain regions studied except for the cortex and the midbrain. Meanwhile, the diabetes condition was associated with significant increase (p<0.05) in AChE activity of the bulbus olfactorius, medulla oblongata and cerebellum. These data suggest that uncontrolled diabetes is associated with significant alterations in the brain cholinergic systems.To whom requests of reprints should be addressed.This work was supported by grants from the National Aeronautics and Space Administration (NSG 2183 and NAG-2-411), a grant from the National Institutes of Health (NIH Grant RR0811) and a grant from the Division of Research Resources, National Institutes of Health (NIH Grant RR03020).  相似文献   

12.
Summary Proctolin at concentrations 10–8–10–7 M elevated by 40% brain adenylate cyclase activity of adultLocusta migratoria migratorioides R.F. In moulting individuals, proctolin caused a decrease in brain adenylate cyclase activity, and it proved to be ineffective in the larvae. Proctolin caused only a slight decrease on guanylate cyclase activity of the brain at every developmental stage.  相似文献   

13.
Summary The distribution of immunoreactive LH in the brain of the white-footed mouse (Peromyscus leucopus) was determined using immunocytochemical procedures. Immunoreactive fibers are located in the hypothalamus, preoptic area, septum and amygdala. Stained cell bodies are seen in the arcuate nucleus and preoptic area. Gonadectomy enhances staining for LH in the brain.We wish to thank the National Institutes of Arthritis, Metabolism, and Digestive Diseases (NIAMDD) for the gift of the antiserum to LH.  相似文献   

14.
Rana oocytes have previously been shown to contain much more soluble tubulin than does the brain, suggesting different assembly and disassembly dynamics of frog oocyte tubulin compared to that in brain. By using centrifugation, SDS-PAGE, two-dimensional gel electrophoresis and Western blots, probed with anti-α-tubulin monoclonal antibodies, polymorphic α-tubulins (isoforms) were compared in brains and follicle-enclosed oocytes of northern (Rana pipiens) and southern (R. berlandieri) frogs. Oocyte tubulin in both species had isoforms with greater ranges of isoelectric point (pI) than those of brain tubulins; in particular, the oocyte tubulin pIs ranged further into the acidic region of the isoelectric-focusing gels than corresponding brain tubulin. This difference may, in part, be responsible for the previously reported assembly differences between oocyte tubulin (undetectable assembly) and brain tubulin (high assembly). Isoforms of α-tubulin with relat ively acidic pI were more abundant in northern frog brain and oocyte soluble extracts than in analogous extracts from southern frogs. Furthermore, additional acidic α-tubulin isoforms were found in progesterone-treated oocytes (i.e., eggs), indicating increased heterogeneity of acidic a-tubulin isoforms during oocyte meiotic maturation. Among northern frog oocyte soluble components fractionated on Superose-6b columns, tubulin complexes with apparent molecular mass of about 1800 kDa were found to contain acidic α-tubulin isoforms while the putative oligomeric tubulins with an apparent molecular mass of about 250 kDa contained an additional relatively basic α-tubulin isoform. The acidic α-tubulin isoforms, therefore, are proposed to be associated with cold-adaptable cells of brain and oocytes, and may also be involved in stabilization of large soluble tubulin complexes in oocytes of the northern frog. Received 1 October 2002; accepted 9 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

15.
Acute mountain sickness (AMS) is a neurological disorder that typically affects mountaineers who ascend to high altitude. The symptoms have traditionally been ascribed to intracranial hypertension caused by extracellular vasogenic edematous brain swelling subsequent to mechanical disruption of the blood–brain barrier in hypoxia. However, recent diffusion-weighted magnetic resonance imaging studies have identified mild astrocytic swelling caused by a net redistribution of fluid from the “hypoxia-primed” extracellular space to the intracellular space without any evidence for further barrier disruption or additional increment in brain edema, swelling or pressure. These findings and the observation of minor vasogenic edema present in individuals with and without AMS suggest that the symptoms are not explained by cerebral edema. This has led to a re-evaluation of the relevant pathogenic events with a specific focus on free radicals and their interaction with the trigeminovascular system. (Part of a multi-author review.)  相似文献   

16.
The physical nature of the agent that causes transmissible spongiform encephalopathies (the 'prion'), is the subject of passionate controversy. Investigation of it has benefited tremendously from the use of transgenic and knockout technologies. However, prion diseases present several other enigmas, including the mechanism of brain damage and how the affinity of the agent for the central nervous system is controlled. Here we show that such questions can be effectively addressed in transgenic and knockout systems, and that pathogenesis may be clarified even before we can be certain about the nature of the infectious agent. Availability of mice overexpressing the Prnp gene (which encodes the normal prion protein) and Prnp knockout mice allows for selective reconstitution experiments aimed at expressing PrP in specific portions of the brain or in selected populations of hemato- and lymphopoietic origin. We summarize how such studies can offer insights into how prions administered to peripheral sites can gain access to central nervous tissue, and into the molecular requirements for spongiform brain damage.  相似文献   

17.
Autotaxin is a secreted cell motility-stimulating exo-phosphodiesterase with lysophospholipase D activity that generates bioactive lysophosphatidic acid. Lysophosphatidic acid has been implicated in various neural cell functions such as neurite remodeling, demyelination, survival and inhibition of axon growth. Here, we report on the in vivo expression of autotaxin in the brain during development and following neurotrauma. We found that autotaxin is expressed in the proliferating subventricular and choroid plexus epithelium during embryonic development. After birth, autotaxin is mainly found in white matter areas in the central nervous system. In the adult brain, autotaxin is solely expressed in leptomeningeal cells and oligodendrocyte precursor cells. Following neurotrauma, autotaxin is strongly up-regulated in reactive astrocytes adjacent to the lesion. The present study revealed the cellular distribution of autotaxin in the developing and lesioned brain and implies a function of autotaxin in oligodendrocyte precursor cells and brain injuries. Received 18 September 2006; received after revision 30 October 2006; accepted 4 December 2006  相似文献   

18.
目的:研究盐酸戊乙奎醚对感染性脑水肿保护作用的机制。方法:采用左颈内动脉注射脂多糖复制大鼠感染性脑水肿模型,将84只雄性SD大鼠随机分为对照组(C组)、水肿组(I组)、盐酸戊乙奎醚治疗组(P组)。检测6h、12h、24h、48h时各组大鼠脑组织含水量、病理形态;脑组织SOD活性、MDA含量;免疫组化法及RT—PCR法检测AQP4蛋白分布与AQP4mRNA含量。结果:(1)与C组相比,I组、P组脑含水量、MDA含量均升高,同时SOD活性、AQP4蛋白、AQP4mRNA表达均减少(P〈0.01)。与对应时间点P组相比,I组脑含水量、MDA含量均升高,同时SOD活性、AQP4蛋白、AQP4mRNA表达均减少,于24h达高峰,48h仍在较高水平(P〈0.01)。(2)脑组织光镜检查:I组大鼠脑组织损伤严重,P组损伤明显减轻。结论:盐酸戊乙奎醚能在一定程度上可减轻感染所致的脑组织损伤,上调AQP4表达,对脑水肿有一定治疗作用,其机制可能与抗氧化作用有关。  相似文献   

19.
Malignant gliomas are relentless tumors that offer a dismal clinical prognosis. They develop many biological advantages that allow them to grow and survive in the unique environment of the brain. The glutamate transporters system x c ? and excitatory amino acid transporters (EAAT) are emerging as key players in the biology and malignancy of these tumors. Gliomas manipulate glutamate transporter expression and function to alter glutamate homeostasis in the brain, which supports their own growth, invasion, and survival. As a consequence, malignant cells are able to quickly destroy and invade surrounding normal brain. Recent findings are painting a larger picture of these transporters in glioma biology, and as such are providing opportunities for clinical intervention for patients. This review will detail the current understanding of glutamate transporters in the biology of malignant gliomas and highlight some of the unique aspects of these tumors that make them so devastating and difficult to treat.  相似文献   

20.
Dopaminergic neurons in the mammalian brain have received substantial attention in the past given their fundamental role in several body functions and behaviours. The largest dopaminergic population is found in two nuclei of the ventral midbrain. Cells of the substantia nigra pars compacta are involved in the control of voluntary movements and postural reflexes, and their degeneration in the adult brain leads to Parkinson’s disease. Cells of the ventral tegmental area modulate rewarding and cognitive behaviours, and their dysfunction is involved in the pathogenesis of addictive disorders and schizophrenia. Because of their clinical relevance, the embryonic development and maintenance of the midbrain dopaminergic cell groups in the adult have been intensively studied in recent years. In the present review, we provide an overview of the mechanisms and factors involved in the development of dopaminergic neurons in the mammalian brain, with a special emphasis on the midbrain dopaminergic population. Received 17 August 2005; received after revision 28 September 2005; accepted 21 October 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号