首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The correct repair of double-strand breaks (DSBs) is essential for the genomic integrity of a cell, as inappropriate repair can lead to chromosomal rearrangements such as translocations. In many hematologic cancers and sarcomas, translocations are the etiological factor in tumorigenesis, resulting in either the deregulation of a proto-oncogene or the expression of a fusion protein with transforming properties. Mammalian cells are able to repair DSBs by pathways involving homologous recombination and nonhomologous end-joining. The analysis of translocation breakpoints in a number of cancers and the development of model translocation systems are beginning to shed light on specific DSB repair pathway(s) responsible for the improper repair of broken chromosomes. Received 19 June 2001; received after revision 6 September 2001; accepted 11 September 2001  相似文献   

2.
It has now been more than ten years since the discovery of the major apoptotic nuclease, DNA fragmentation factor (DFF), also known as caspaseactivated DNase (CAD). Here we review the recent literature that has uncovered new insight into DFF’s regulation, and both its positive and negative roles in human disease. Cells from mice deficient in DFF still undergo apoptotic death without significant cellautonomous DNA degradation. Their corpses’ genomes are subsequently degraded by lysosomal DNase II after phagocytosis. However,DFF-deficient mice are more susceptible to cancer. Indeed, several different cancers in humans are associated with defects in DFF expression and it has been proposed that DFF is a p53-independent tumor suppressor. Negative aspects of DFF expression include contributing to susceptibility to acquire systemic lupus erythematosus, to chromosomal translocations that result in mixed lineage leukemias, and in the possible spreading of oncogenes and HIV due to horizontal gene transfer. Received 06 August 2008; received after revision 03 September 2008; accepted 09 September 2008  相似文献   

3.
The discovery of oncogenes (c-onc’s) and tumor suppressors (TS’s) has led to the concept that cancer arises from defects in each of these classes of genes or their products. More recently, it has been appreciated that c-onc and TS proteins often affect one another’s functions. Within this context, I review the two classical TS’s, p53 and the retinoblastoma protein, and the consequences of their inactivation. The various forms of genomic instability (GI) that underly the high mutation rates of transformed cells are then discussed. Particular emphasis is placed upon the concept that GI is not only an integral part of the transformed state but is a prerequisite. Increased oxidative DNA damage, and/or an inabiliy to repair it, can lead to GI. The review then discusses recent observations showing that loss of the TS protein peroxiredoxin 1 (prdx1) and increased expression of the c-onc protein c-Myc, each leads to increased oxidative DNA damage. The critical nature of the c-onc-TS interaction is underscored by that occurring between prdx1 and c-Myc, with the former protein regulating the production of DNA-damaging reactive oxygen species by the latter. The intimate association between these proteins and others serves as a paradigm for the exquisite balancing act that c-onc’s and TS’s must maintain in order to properly control normal DNA replication and cellular proliferation while simultaneously minimizing the acquisition of potentially neoplastic mutations. Received 10 May 2005; received after revision 3 July 2005; accepted 19 July 2005  相似文献   

4.
Telomeres and chromosomal instability   总被引:2,自引:0,他引:2  
Telomeres are distinctive structures, composed of a repetitive DNA sequence and associated proteins, which enable cells to distinguish chromosome ends from DNA double-strand breaks. Telomere alterations, caused by replication-mediated shortening, direct damage or defective telomere-associated proteins, usually generate chromosomal instability, which is observed in senescence and during the immortalization process. In cancer cells, this chromosome instability could be extended by their ability to repair chromosomes and terminate in break-fusion-bridge cycles. Dysfunctional telomeres can be healed by activation of telomerase or by the alternative mechanism of telomere lengthening. Activation of such telomere maintenance mechanisms may help to preserve the integrity of chromosomes even if they play a role in chromosomal instability. This review focuses on molecular processes involved in telomere maintenance and chromosomal instability associated with dysfunctional telomeres in mammalian cells.Received 24 July 2003; received after revision 5 September 2003; accepted 11 September 2003  相似文献   

5.
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.  相似文献   

6.
Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.  相似文献   

7.
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term “checkpoint” was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.  相似文献   

8.
The possible promoting effect of streptozotocin (STZ; 65 mg/kg body weight, intraperitoneal)-induced diabetes during 2-acetylaminofluorene (2-AAF; 0.04% in basal diet)-initiated hepatocarcinogenesis and modulatory effect of 1α,25-dihydroxyvitamin D3 (VD3; 0.3 μg/0.1 ml in propylene glycol, per os) were investigated by monitoring chromosomal aberrations (CAs), DNA strand breaks and specific DNA adducts in rat liver. VD3 treatment (twice a week) was started 4 weeks before the 2-AAF regimen and continued throughout the study. Aberrant metaphase chromosomes were counted from the regenerating hepatocytes 15, 30 or 45 weeks after STZ injection, while DNA strand break and adduct assays were performed 45 days post-STZ treatment. Dietary exposure to 2-AAF elicited a substantial increase in CAs and elevated the extent of DNA strand breaks and formation of N-(deoxyguanosin-8-yl)-2-aminofluorene. A promoting effect of STZ was evident from CAs coupled with DNA strand break analysis. VD3 treatment substantially reducted 2-AAF+STZ-induced CAs as well as DNA strand breaks and adducts. Thus, VD3 appears to be effective in suppressing liver-specific early chromosomal as well as DNA damage during the process of rat hepatocarcinogenesis initiated with 2-AAF and promoted by STZ contributing to its promise as a cancer chemotherapeutic agent. Received 27 April 2001; accepted 22 May 2001  相似文献   

9.
The cells of an ataxia-oculomotor apraxia type 1 (AOA1) patient, homozygous for a new aprataxin mutation (T739C), were treated with camptothecin, an inhibitor of DNA topoisomerase I which induces DNA single-strand breaks. DNA damage was evaluated by cytogenetic analysis of chromosomal aberrations. The results obtained showed marked and dose-related increases in induced chromosomal aberrations in the patient and her heterozygous mother compared to the intrafamilial wild-type control. The alkaline comet assay confirmed this pattern. Moreover, the AOA1 cells did not show hypersensitivity to ionizing radiation, i.e. X-rays. These findings clearly indicate the direct involvement of aprataxin in the DNA single-strand-break repair machinery.Received 6 October 2004; received after revision 24 November 2004; accepted 28 December 2004P. Mosesso and M. Piane contributed equally to this work.  相似文献   

10.
11.
DNA damage repair and transcription   总被引:4,自引:1,他引:3  
Double-strand breaks arise frequently in the course of endogenous - normal and pathological - cellular DNA metabolism or can result from exogenous agents such as ionizing radiation. It is generally accepted that these lesions represent one of the most severe types of DNA damage with respect to preservation of genomic integrity. Therefore, cells have evolved complex mechanisms that include cell-cycle arrest, activation of various genes, including those associated with DNA repair, and in certain cases induction of the apoptotic pathway to respond to double-strand breaks. In this review we discuss recent progress in our understanding of cellular responses to DNA double-strand breaks. In addition to an analysis of the current paradigms of detection, signaling and repair, insights into the significance of chromatin remodeling in the double-strand break-response pathways are provided.  相似文献   

12.
Poly-ADP-ribosylation in health and disease   总被引:6,自引:0,他引:6  
  相似文献   

13.
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.  相似文献   

14.
During the last decade, interest has grown in the beneficial effects of non-steroidal anti-inflammatory drugs (NSAIDs) in neurodegeneration, particularly in pathologies such as Alzheimer’s (AD) and Parkinson’s (PD) disease. Evidence from epidemiological studies has indicated a decreased risk for AD and PD in patients with a history of chronic NSAID use. However, clinical trials with NSAIDs in AD patients have yielded conflicting results, suggesting that these drugs may be beneficial only when used as preventive therapy or in early stages of the disease. NSAIDs may also have salutary effects in other neurodegenerative diseases with an inflammatory component, such as multiple sclerosis and amyotrophic lateral sclerosis. In this review we analyze the molecular (cyclooxygenases, secretases, NF-κB, PPAR, or Rho-GTPasas) and cellular (neurons, microglia, astrocytes or endothelial cells) targets of NSAIDs that may mediate the therapeutic function of these drugs in neurodegeneration. Received 4 December 2006; received after revision 24 January 2007; accepted 23 February 2007  相似文献   

15.
Proliferating cell nuclear antigen: a proteomics view   总被引:3,自引:0,他引:3  
Proliferating cell nuclear antigen (PCNA), a cell cycle marker protein, is well known as a DNA sliding clamp for DNA polymerase delta and as an essential component for eukaryotic chromosomal DNA replication and repair. Due to its mobility inside nuclei, PCNA is dynamically presented in a soluble or chromatin-associated form. The heterogeneity and specific modifications of PCNA may reflect its multiple functions and the presence of many binding partners in the cell. The recent proteomics approaches applied to characterizing PCNA interactions revealed multiple PCNA partners with a wide spectrum of activity and unveiled the possible existence of new PCNA functions. Since more than 100 PCNA-interacting proteins and several PCNA modifications have already been reported, a proteomics point of view seems exactly suitable to better understand the role of PCNA in cellular functions. Received 29 May 2008; received after revision 7 July 2008; accepted 16 July 2008  相似文献   

16.
Biochemical aspects of radiation biology   总被引:1,自引:0,他引:1  
Summary In order to analyze the mechanisms of biological radiation effects, the events after radiation energy absorption in irradiated organisms have to be studied by physico-chemical and biochemical methods. The radiation effects in vitro on biomolecules, especially DNA, are described, as well as their alterations in irradiated cells. Whereas in vitro, in aqueous solution, predominantly OH radicals are effective and lead to damage in single moieties of the DNA, in vivo the direct absorption of radiation energy leads to locally multiply-damaged sites, which produce DNA double-strand breaks and locally denatured regions. DNA damage will be repaired in irradiated cells. Error free repair leads to the original nucleotide sequence in the genome by excision or by recombination. Error prone repair (mutagenic repair), leads to mutation. However, the biochemistry of these processes, regulated by a number of genes, is poorly understood. In addition, more complex reactions, such as gene amplification and transposition of mobile gene elements, are responsible for mutation or malignant transformation.  相似文献   

17.
U Hagen 《Experientia》1989,45(1):7-12
In order to analyze the mechanisms of biological radiation effects, the events after radiation energy absorption in irradiated organisms have to be studied by physico-chemical and biochemical methods. The radiation effects in vitro on biomolecules, especially DNA, are described, as well as their alterations in irradiated cells. Whereas in vitro, in aqueous solution, predominantly OH radicals are effective and lead to damage in single moieties of the DNA, in vivo the direct absorption of radiation energy leads to 'locally multiply-damaged sites', which produce DNA double-strand breaks and locally denatured regions. DNA damage will be repaired in irradiated cells. Error free repair leads to the original nucleotide sequence in the genome by excision or by recombination. "Error prone repair"(mutagenic repair), leads to mutation. However, the biochemistry of these processes, regulated by a number of genes, is poorly understood. In addition, more complex reactions, such as gene amplification and transposition of mobile gene elements, are responsible for mutation or malignant transformation.  相似文献   

18.
Many kinds of cells, including embryonic stem cells and tissue stem cells, have been considered candidates for transplantation therapy for neuro- and muscle-degenerative diseases. Bone marrow stromal cells (MSCs) also have great potential as therapeutic agents since they are easily isolated and can be expanded from patients without serious ethical or technical problems. Recently, new methods for the highly efficient and specific induction of functional neurons and skeletal muscle cells have been developed for MSCs. These induced cells were transplanted into animal models of stroke, Parkinson’s disease and muscle degeneration, resulting in the successful integration of transplanted cells and improvement in the behavior of the transplanted animals. Here I describe the discovery of these induction systems and focus on the potential use of MSC-derived cells for ‘auto-cell transplantation therapy’ in neuro- and muscle-degenerative diseases. Received 27 April 2006; received after revision 5 June 2006; accepted 22 August 2006  相似文献   

19.
The pathogenesis of any given human disease is a complex multifactorial process characterized by many biologically significant and interdependent alterations. One of these changes, specific to a wide range of human pathologies, is DNA hypomethylation. DNA hypomethylation signifies one of the major DNA methylation states that refers to a relative decrease from the “normal” methylation level. It is clear that disease by itself can induce hypomethylation of DNA; however, a decrease in DNA methylation can also have an impact on the predisposition to pathological states and disease development. This review presents evidence suggesting the involvement of DNA hypomethylation in the pathogenesis of several major human pathologies, including cancer, atherosclerosis, Alzheimer’s disease, and psychiatric disorders. The views expressed in this paper do not necessarily represent those of the US Food and Drug Administration.  相似文献   

20.
De novo germline mutations arise preferentially in male owing to fundamental differences between spermatogenesis and oogenesis. Post-meiotic chromatin remodeling in spermatids results in the elimination of most of the nucleosomal supercoiling and is characterized by transient DNA fragmentation. Using three alternative methods, DNA from sorted populations of mouse spermatids was used to confirm that double-strand breaks (DSB) are created in elongating spermatids and repaired at later steps. Specific capture of DSB was used for whole-genome mapping of DSB hotspots (breakome) for each population of differentiating spermatids. Hotspots are observed preferentially within introns and repeated sequences hence are more prevalent in the Y chromosome. When hotspots arise within genes, those involved in neurodevelopmental pathways become preferentially targeted reaching a high level of significance. Given the non-templated DNA repair in haploid spermatids, transient DSBs formation may, therefore, represent an important component of the male mutation bias and the etiology of neurological disorders, adding to the genetic variation provided by meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号