首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Summary Neurons and glioblasts that arise in the ventricular zone migrate to form discrete nuclei and laminae as the central nervous system develops. By stably labeling precursor cells in the ventricular zone, pathways taken by different cells within an individual clone can be described. We have used recombinant retroviruses to label precursor cells with a heritable marker, theE. coli lacZ gene; clones of lacZ-positive cells are later mapped histochemically. Here we review results from three regions of the chicken central nervous system — the optic tectum, spinal cord, and forebrain - and compare them with previous results from mammalian cortex and other regions of the vertebrate CNS. In particular, we consider the relationship between migratory patterns and functional organization, the existence of multiple cellular sources of migratory guidance, and the issue of whether a cell's choice of migratory pathway influences its ultimate phenotype.  相似文献   

2.
Cell lineage and cell migration in the developing cerebral cortex   总被引:4,自引:0,他引:4  
Summary Modern techniques which trace lineages of individual progenitor cells have provided some clues about the processes that determine cell fate in the brain, and have also given us some information about migratory patterns of clonally related cells. In many parts of the central nervous system, progenitors are multipotent; single clones can contain multiple neuronal types or even mixtures of neurons and glia. In addition, one can observe a wide distribution in clone size, even when marking is done in a narrow time window. This suggests that progenitor cells may be fairly plastic and responsive to environmental signals. In the developing cortex, clonally related cells are initially grouped near each other, as in the retina and tectum. However, the subsequent migration of these cells from the ventricular zone to the cortex along glial fibers is accompanied by a progressive dispersion of clonally related neurons.  相似文献   

3.
Oligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs. Here, we will review the cellular and molecular basis of this important event during embryonic and postnatal development, and we will discuss the relevance of the substantial number of OPCs existing in the adult CNS. Similarly, we will consider the behaviour of OPCs in normal and pathological conditions, especially in animal models of demyelination and of the demyelinating disease, multiple sclerosis. The spontaneous remyelination observed after damage in demyelinating pathologies has a limited effect. Understanding the cellular and molecular mechanisms underlying the biology of OPCs, particularly adult OPCs, should help in the design of neuroregenerative strategies to combat multiple sclerosis and other demyelinating diseases.  相似文献   

4.
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell–cell and cell–matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.  相似文献   

5.
Cellular and Molecular Life Sciences - Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss...  相似文献   

6.
Autotaxin is a secreted cell motility-stimulating exo-phosphodiesterase with lysophospholipase D activity that generates bioactive lysophosphatidic acid. Lysophosphatidic acid has been implicated in various neural cell functions such as neurite remodeling, demyelination, survival and inhibition of axon growth. Here, we report on the in vivo expression of autotaxin in the brain during development and following neurotrauma. We found that autotaxin is expressed in the proliferating subventricular and choroid plexus epithelium during embryonic development. After birth, autotaxin is mainly found in white matter areas in the central nervous system. In the adult brain, autotaxin is solely expressed in leptomeningeal cells and oligodendrocyte precursor cells. Following neurotrauma, autotaxin is strongly up-regulated in reactive astrocytes adjacent to the lesion. The present study revealed the cellular distribution of autotaxin in the developing and lesioned brain and implies a function of autotaxin in oligodendrocyte precursor cells and brain injuries. Received 18 September 2006; received after revision 30 October 2006; accepted 4 December 2006  相似文献   

7.
Mechanism of neurogenesis in adult avian brain   总被引:3,自引:0,他引:3  
Summary Adult neurogenesis in birds offers unique opportunities to study basic questions addressing the birth, migration and differentiation of neurons. Neurons in adult canaries originate from discrete proliferative regions on the walls of the lateral ventricles. They migrate away from their site of birth, initially at high rates, along the processes of radial cells. The rates of dispersal diminish as the young neurons invade regions devoid of radial fibers, probably under the guidance of other cues. The discrete sites of birth in the ventricular zone generate neurons that end up differentiating throughout the telencephelon. New neurons may become interneurons or projection neurons; the latter connect two song control nuclei between neostriatum and archistriatum. Radial cells, that in mammals disappear as neurogenesis comes to an end, persist in the adult avian brain. The presence of radial cells may be key to adult neurogenesis. Not only do they serve as guides for initial dispersal, they also divide and may be the progenitors of new neurons.  相似文献   

8.
Mechanism of neurogenesis in adult avian brain   总被引:1,自引:0,他引:1  
Adult neurogenesis in birds offers unique opportunities to study basic questions addressing the birth, migration and differentiation of neurons. Neurons in adult canaries originate from discrete proliferative regions on the walls of the lateral ventricles. They migrate away from their site of birth, initially at high rates, along the processes of radical cells. The rates of dispersal diminish as the young neurons invade regions devoid of radial fibers, probably under the guidance of other cues. The discrete sites of birth in the ventricular zone generate neurons that end up differentiating throughout the telencephalon. New neurons may become interneurons or projection neurons; the latter connect two song control nuclei between neostriatum and archistriatum. Radial cells, that in mammals disappear as neurogenesis comes to an end, persist in the adult avian brain. The presence of radial cells may be key to adult neurogenesis. Not only do they serve as guides for initial dispersal, they also divide and may be the progenitors of new neurons.  相似文献   

9.
Summary According to our results, we think that the tolerance developed to central effects of N-methylamphetamiee are caused by the liberation and posterior depletion of phenethylamine from its storage places, which is in agreement with our hypothesis about the action mechanisms of amphetamines in the central nervous system.  相似文献   

10.
M K Birmingham  W E Stumpf  M Sar 《Experientia》1979,35(9):1240-1241
Autoradiographic studies with 3H aldosterone demonstrate nuclear concentration of hormone in neurons of the hippocampus, septum, allocortical regions and brain stem reticular formation and motor nuclei of cranial nerves and in the meninges. The results suggest that mineralocorticoids have wide ranging effects on different parts of the central nervous system.  相似文献   

11.
Despite an exponential production of data, Alzheimer's disease (AD) remains an enigma. Unresolved questions persist in the face of the heterogeneity of this neuropathology. Recent progress in understanding mechanisms for AD results from the study of amyloid precursor protein (APP) metabolism and the involvement of senile plaque-associated proteins. In addition to the amyloid cascade hypothesis, alternative schemes emerge, in which the amyloid peptide is not the primary effector of the disease. Perturbations of vesicular trafficking, the cytoskeletal network, and membrane cholesterol distribution could be central events. Furthermore, since the physiological role of APP, presenilins, and apolipoprotein E in the central nervous system are not completely understood, their involvement in AD etiology remains speculative. New actors have to be found to try to explain sporadic cases and non-elucidated familial cases.  相似文献   

12.
13.
Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.  相似文献   

14.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

15.
Central nervous system stem cells in the embryo and adult   总被引:19,自引:0,他引:19  
The central nervous system is generated from neural stem cells during embryonic development. These cells are multipotent and generate neurons, astrocytes and oligodendrocytes. The last few years it has been found that there are populations of stem cells also in the adult mammalian brain and spinal cord. In this paper, we review the recent development in the field of embryonic and adult neural stem cells. Received 26 March 1998; received after revision 27 April 1998; accepted 27 April 1998  相似文献   

16.
The C1q family is characterized by a C-terminal conserved global C1q domain, which is structurally very similar to the tumor necrosis factor homology domain. Although some C1q family members are expressed in the central nervous system, their functions have not been well characterized. Cbln1, a member of the Cbln subfamily of the C1q family, is predominantly expressed in cerebellar granule cells. Interestingly, Cbln1 was recently shown to play two unique roles at excitatory synapses formed between cerebellar granule cells and Purkinje cells: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytosis pathway. Since other Cbln subfamily members, Cbln2-Cbln4, are expressed in various regions of developing and mature brains, Cbln subfamily proteins may generally serve as a new class of transneuronal regulators of synapse development and synaptic plasticity in various brain regions.  相似文献   

17.
Cholesterol is a multifaceted molecule. First, it serves as an essential membrane component, as a cofactor for signaling molecules and as a precursor for steroid hormones; second, its synthesis, intercellular transport and intracellular distribution present a logistic tour de force requiring hundreds of cellular components, and third, it plays a crucial role in major human diseases. Despite intense research on this molecule, its metabolism in the central nervous system and its role in neuronal development and function are not well understood. Here I summarize recent results and hypotheses about how neurons maintain their cholesterol level and how cholesterol influences the establishment and maintenance of synaptic connections.  相似文献   

18.
Docosahexaenoic acid (DHA) is an omega-3 fatty acid obtained from the diet or synthesized from alpha-linolenic acid through the action of fatty acid elongases (ELOVL) and desaturases. DHA plays important roles in the central nervous system as well as in peripheral organs and is the precursor of several molecules that regulate resolution of inflammation. In the present study, we questioned whether impaired synthesis of DHA affected macrophage plasticity and polarization both in vitro and in vivo models. For this we investigated the activation status and inflammatory response of bone marrow-derived M1 and M2 macrophages obtained from mice deficient of Elovl2 (Elovl2?/?), a key enzyme for DHA synthesis in mammals. Although both wild type and Elovl2?/? mice were able to generate efficient M1 and M2 macrophages, M1 cells derived from Elovl2?/? mice showed an increased expression of key markers (iNOS, CD86 and MARCO) and cytokines (IL-6, IL-12 and IL-23). However, M2 macrophages exhibited upregulated M1-like markers like CD80, CD86 and IL-6, concomitantly with a downregulation of their signature marker CD206. These effects were counteracted in cells obtained from DHA-supplemented animals. Finally, white adipose tissue of Elovl2?/? mice presented an M1-like pro-inflammatory phenotype. Hence, impairment of systemic DHA synthesis delineates an alteration of M1/M2 macrophages both in vitro and in vivo, with M1 being hyperactive and more pro-inflammatory while M2 less protective, supporting the view that DHA has a key role in controlling the balance between pro- and anti-inflammatory processes.  相似文献   

19.
Identification of the bioactive peptide PEC-60 in brain   总被引:1,自引:0,他引:1  
PEC-60 is a 60-residue peptide originally isolated from pig intestine. It inhibits glucose-induced insulin secretion from perfused pancreas in a hormonal manner and also has biological activity in the immune system. PEC-60-like immunoreactive material has been reported in catecholamine neurons of the central and peripheral nervous systems, but the peptide has not been identified from that material. We have now isolated PEC-60 from pig and rat brains with a method that combines column purification procedures with the specificity of a radioimmunoassay and the sensitivity of mass spectrometry to directly identify the peptide. The results show that PEC-60, like many other peptides, is expressed in the gastrointestinal tract and the central nervous system. The specific regional brain distribution and interaction with classical neurotransmitters raise the possibility that PEC-60may play a role in the central nervous system disorders involving dopamine dysregulation. Received 6 December 2002; received after revision 10 December 2002; accepted 11 December 2002 RID="*" ID="*"Corresponding author.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号