首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe ?/?) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe ?/? mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.  相似文献   

3.
The non-coding microRNA (miRNA) is involved in the regulation of hepatitis C virus (HCV) infection and offers an alternative target for developing anti-HCV agent. In this study, we aim to identify novel cellular miRNAs that directly target the HCV genome with anti-HCV therapeutic potential. Bioinformatic analyses were performed to unveil liver-abundant miRNAs with predicted target sequences on HCV genome. Various cell-based systems confirmed that let-7b plays a negative role in HCV expression. In particular, let-7b suppressed HCV replicon activity and down-regulated HCV accumulation leading to reduced infectivity of HCVcc. Mutational analysis identified let-7b binding sites at the coding sequences of NS5B and 5'-UTR of HCV genome that were conserved among various HCV genotypes. We further demonstrated that the underlying mechanism for let-7b-mediated suppression of HCV RNA accumulation was not dependent on inhibition of HCV translation. Let-7b and IFNα-2a also elicited a synergistic inhibitory effect on HCV infection. Together, let-7b represents a novel cellular miRNA that targets the HCV genome and elicits anti-HCV activity. This study thereby sheds new insight into understanding the role of host miRNAs in HCV pathogenesis and to developing a potential anti-HCV therapeutic strategy.  相似文献   

4.
5.
Stem cell senescence is considered deleterious because it may impair tissue renewal and function. On the other hand, senescence may arrest the uncontrolled growth of transformed stem cells and protect organisms from cancer. This double function of senescence is strictly linked to the activity of genes that the control cell cycle such as the retinoblastoma proteins RB1, RB2/P130, and P107. We took advantage of the RNA interference technique to analyze the role of these proteins in the biology of mesenchymal stem cells (MSC). Cells lacking RB1 were prone to DNA damage. They showed elevated levels of p53 and p21cip1 and increased regulation of RB2/P130 and P107 expression. These cells gradually adopted a senescent phenotype with impairment of self-renewal properties. No significant modification of cell growth was observed as it occurs in other cell types or systems. In cells with silenced RB2/P130, we detected a reduction of DNA damage along with a higher proliferation rate, an increase in clonogenic ability, and the diminution of apoptosis and senescence. Cells with silenced RB2/P130 were cultivated for extended periods of time without adopting a transformed phenotype. Of note, acute lowering of P107 did not induce relevant changes in the in vitro behavior of MSC. We also analyzed cell commitment and the osteo-chondro-adipogenic differentiation process of clones derived by MSC cultures. In all clones obtained from cells with silenced retinoblastoma genes, we observed a reduction in the ability to differentiate compared with the control clones. In summary, our data show evidence that the silencing of the expression of RB1 or RB2/P130 is not compensated by other gene family members, and this profoundly affects MSC functions.  相似文献   

6.
Activation of Kupffer cells (KCs) induced that inflammatory cytokine production plays a central role in the pathogenesis of HBV infection. The previous studies from our and other laboratory demonstrated miRNAs can regulate TLR-inducing inflammatory responses to macrophage. However, the involvement of miRNAs in HBV-associated antigen-induced macrophage activation is still not thoroughly understood. Here, we evaluated the effects and mechanisms of miR-155 in HBV-associated antigen-induced macrophage activation. First, co-culture assay of HepG2 or HepG2.2.15 cells and RAW264.7 macrophages showed that HepG2.2.15 cells could significantly promote macrophages to produce inflammatory cytokines. Furthermore, we, respectively, stimulated RAW264.7 macrophages, mouse primary peritoneal macrophages, or healthy human peripheral blood monocytes with HBV-associated antigens, including HBcAg, HBeAg, and HBsAg, and found that only HBeAg could steadily enhance the production of inflammatory cytokines in these cells. Subsequently, miRNAs sequencing presented the up- or down-regulated expression of multiple miRNAs in HBeAg-stimulated RAW264.7 cells. In addition, we verified the expression of miR-155 and its precursors BIC gene with q-PCR in the system of co-culture or HBeAg-stimulated macrophages. Meanwhile, the increased miR-155 expression was positively correlation with serum ALT, AST, and HBeAg levels in AHB patients. Although MAPK, PI3K, and NF-κB signal pathways were all activated during HBeAg treatment, only PI3K and NF-κB pathways were involved in miR-155 expression induced by HBeAg stimulation. Consistently, miR-155 over-expression inhibited production of inflammatory cytokines, which could be reversed by knocking down miR-155. Moreover, we demonstrated that miR-155 regulated HBeAg-induced cytokine production by targeting BCL-6, SHIP-1, and SOCS-1. In conclusion, our data revealed that HBeAg augments the expression of miR-155 in macrophages via PI3K and NF-κB signal pathway and the increased miR-155 promotes HBeAg-induced inflammatory cytokine production by inhibiting the expression of BCL-6, SHIP-1, and SOCS-1.  相似文献   

7.
8.
MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.  相似文献   

9.
10.
Neurodegenerative disease strikes millions worldwide and there is mounting evidence suggesting that underlying the onset and progression of these debilitating diseases is inappropriate neuronal apoptosis. Recent reports have implicated a family of proteins known as histone deacetylases (HDACs) in various neuronal processes including the neuronal death program. Initial headway in this field has been made largely through the use of broad-spectrum HDAC inhibitors. In fact, pharmacological inhibition of HDAC activity has been shown to protect neurons in several models of neurodegeneration. The observation that HDAC inhibitors can have opposing effects in different paradigms of neurodegeneration suggests that individual members of the HDAC protein family may play distinct roles that could depend on the specific cell type under study. The purpose of this review is to detail work involving the use of HDAC inhibitors within the context of neurodegeneration and examine the roles of individual HDAC members in the nervous system with specific focus on neuronal cell death. Received 25 January 2007; received after revision 3 April 2007; accepted 26 April 2007  相似文献   

11.
Mitogenic signals stimulate cell division by activating cyclin/cyclin-dependent kinase (CDK) complexes. Their timely regulation ensures proper cell cycle progression. It is therefore not surprising that cyclin/CDK complexes are integrators of multiple signals from both the extracellular environment and intracellular cues. Important regulators of cyclin/CDKs are the CDK inhibitors that have attracted attention due to their association with disease. p27KIP1 is a CDK inhibitor that controls CDK activity throughout the cell cycle. As a CDK inhibitor, p27KIP1 has tumor suppressor activity. Besides CDKs, p27KIP1 regulates additional cellular processes, including cell motility, some of which seem to mediate oncogenic activities of p27KIP1. These activities of p27KIP1 are regulated through multiple phosphorylation sites, targeted by several signal transduction pathways. Understanding functions and regulation of p27KIP1 will be important to determine which isoform of p27KIP1 has anti- or pro-tumorigenic activities. Such knowledge might be of prognostic value and may offer novel therapeutic windows. Received 26 May 2008; accepted 17 June 2008  相似文献   

12.
Recent animal and clinical studies report promising results for the therapeutic utilization of stem cells in regenerative medicine. Mesenchymal stem cells (MSCs), with their pluripotent nature, have advantages over embryonic stem cells in terms of their availability and feasibility. However, their proliferative activity is destined to slow by replicative senescence, and the limited proliferative potential of MSCs not only hinders the preparation of sufficient cells for in vivo application, but also draws a limitation on their potential for differentiation. This calls for the development of safe and efficient means to increase the proliferative as well as differentiation potential of MSCs. Recent advances have led to a better understanding of the underlying mechanisms and significance of cellular senescence, facilitating ways to manipulate the replicative lifespan of a variety of primary cells, including MSCs. This paper introduces a class of proteins that function as senescence suppressors. Like tumor suppressors, these proteins are lost in senescence, while their forced expression delays the onset of senescence. Moreover, treatments that increase the expression or the activity of senescence suppressors, therefore, cause expansion of the replicative and differentiation potential of MSCs. The nature of the activities and putative underlying mechanisms of the senescence suppressors will be discussed to facilitate their evaluation.  相似文献   

13.
14.
Granulocyte colony-stimulating factor (GCSF) is currently in clinical trials to treat neurodegenerative diseases and stroke. Here, we tested whether LIM domain only 4 protein (LMO4), a hypoxia-inducible gene that protects neurons from ischemic injury, could modulate the neuroprotective effect of GCSF. We showed that GCSF treatment acetylates and phosphorylates Stat3, activates expression of a Stat3-dependent anti-apoptotic gene, p27, and increases neuron survival from ischemic injury. LMO4 participates in Stat3 signaling in hepatocytes and associates with histone deacetylase 2 (HDAC2) in cancer cells. In the absence of LMO4, GCSF fails to rescue neurons from ischemic insults. In wild-type neurons, inhibition of HDAC promoted Stat3 acetylation and the antiapoptotic effect of GCSF. In LMO4 null cortical neurons, expression of wild-type but not HDAC-interaction-deficient LMO4 restored GCSF-induced Stat3 acetylation and p27 expression. Thus, our results indicate that LMO4 enhances GCSF-induced Stat3 signaling in neurons, in part by sequestering HDAC.  相似文献   

15.
16.
17.
p75NTR, the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75NTR expression and pluripotency has been described. p75NTR was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75NTR in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75NTR signaling in different models are also highlighted. p75NTR-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75NTR can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75NTR activity as well as the underlying molecular mechanisms of p75NTR will shed new light on the biology of both normal and cancer stem cells.  相似文献   

18.
Zusammenfassung Nach. i.v. Gabe von 7-3H-Dehydroepiandrosteron wurde menschliches Plasma einer präparativen Zonenelektrophorese unterworfen und in Albumine, 1-, 2-,- und-Globuline zerlegt. Aus den einzelnen Proteinfraktionen trennte man freie Steroide, Steroid-Sulfokonjugate und -Glukuronoside ab und untersuchte letztere Fraktionen auf ihren Gehalt an markierten C19-Steroiden. Es zeigte sich, dass die Steroid-Sulfokonjugate vornehmlich in der Proteinfraktion der Albumine, die Steroid-Glukuronoside dagegen bevorzugt in der Proteinfraktion der 1-Globuline auftraten.  相似文献   

19.
20.
Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score?=?? 5.146, p?<?0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p?<?0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r?=?? 0.647, p?<?0.05; r?=?? 0.629, p?<?0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号