共查询到20条相似文献,搜索用时 0 毫秒
1.
Jianmin Shi 《Journal of forecasting》2016,35(3):250-262
Model uncertainty and recurrent or cyclical structural changes in macroeconomic time series dynamics are substantial challenges to macroeconomic forecasting. This paper discusses a macro variable forecasting methodology that combines model uncertainty and regime switching simultaneously. The proposed predictive regression specification permits both regime switching of the regression parameters and uncertainty about the inclusion of forecasting variables by employing Bayesian model averaging. In an empirical exercise involving quarterly US inflation, we observed that our Bayesian model averaging with regime switching leads to substantial improvements in forecast performance, particularly in the medium horizon (two to four quarters). Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Patricia Toledo;Roberto Duncan; 《Journal of forecasting》2024,43(4):1087-1113
In this paper, we consider the forecasting of domestic food price inflation (DFPI) using global indicators, with emphasis on episodes of macroeconomic turbulence, namely, the Global Financial Crisis (GFC) and the COVID-19 pandemic and its subsequent repercussions. Our monthly dataset covers about two decades for more than a hundred economies. We employ dynamic model averaging (DMA) to tackle both model uncertainty and parameter instability and produce pseudo out-of-sample forecasts. Thus, we are able to focus on the forecasting ability of the global predictors of DFPI before and during the global crises. We find evidence that the DMA specification tends to outperform statistical models frequently used in the literature such as random walks, autoregressive models, and time-varying parameter models, especially during global crises. We also identify the most successful predictors during the crises using their posterior probabilities of inclusion. By comparing the distributions of such probabilities, we find that the international food price inflation is the most useful predictor of DFPI for numerous countries during both crises. Other indicators such as domestic CPI inflation as well as the international inflation of agricultural commodities, fertilizers, and other food categories improved their forecasting ability, particularly during the COVID-19 period. 相似文献
3.
Jonathan H. Wright 《Journal of forecasting》2009,28(2):131-144
Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal‐weighted averaging of the forecasts from a large number of different models, each of which is a linear regression relating inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian model averaging for pseudo out‐of‐sample prediction of US inflation, and find that it generally gives more accurate forecasts than simple equal‐weighted averaging. This superior performance is consistent across subsamples and a number of inflation measures. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Yuqing Feng;Yaojie Zhang;Yudong Wang; 《Journal of forecasting》2024,43(3):567-582
Estimation windows, either rolling or expanding, are used for volatility forecasting. In this study, we propose a new approach relying on both estimation windows. Our method is based on how well these two windows performed in terms of prediction during a recent period of past time. We will continue to use whichever one has performed better in the past. Results show that our strategy significantly outperforms the individual and mean combination models. Whether the window is rolling or expanding, the relatively better performance is persistent. In other words, we document the existence of the momentum of predictability (MoP). A mean–variance investor can achieve the highest utility gains using our strategy for volatility forecasting. Moreover, the results pass a series of robustness tests. 相似文献
5.
Michael McCrae Yan‐Xia Lin Daniel Pavlik Chandra M. Gulati 《Journal of forecasting》2002,21(5):355-380
Conventional wisdom holds that restrictions on low‐frequency dynamics among cointegrated variables should provide more accurate short‐ to medium‐term forecasts than univariate techniques that contain no such information; even though, on standard accuracy measures, the information may not improve long‐term forecasting. But inconclusive empirical evidence is complicated by confusion about an appropriate accuracy criterion and the role of integration and cointegration in forecasting accuracy. We evaluate the short‐ and medium‐term forecasting accuracy of univariate Box–Jenkins type ARIMA techniques that imply only integration against multivariate cointegration models that contain both integration and cointegration for a system of five cointegrated Asian exchange rate time series. We use a rolling‐window technique to make multiple out of sample forecasts from one to forty steps ahead. Relative forecasting accuracy for individual exchange rates appears to be sensitive to the behaviour of the exchange rate series and the forecast horizon length. Over short horizons, ARIMA model forecasts are more accurate for series with moving‐average terms of order >1. ECMs perform better over medium‐term time horizons for series with no moving average terms. The results suggest a need to distinguish between ‘sequential’ and ‘synchronous’ forecasting ability in such comparisons. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
6.
A common explanation for the inability of the monetary model to beat the random walk in forecasting future exchange rates is that conventional time series tests may have low power, and that panel data should generate more powerful tests. This paper provides an extensive evaluation of this power argument to the use of panel data in the forecasting context. In particular, by using simulations it is shown that although pooling of the individual prediction tests can lead to substantial power gains, pooling only the parameters of the forecasting equation, as has been suggested in the previous literature, does not seem to generate more powerful tests. The simulation results are illustrated through an empirical application. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
7.
At what forecast horizon is one time series more predictable than another? This paper applies the Diebold–Kilian conditional predictability measure to assess the out‐of‐sample performance of three alternative models of daily GBP/USD and DEM/USD exchange rate returns. Predictability is defined as a non‐linear statistic of a model's relative expected losses at short and long forecast horizons, allowing flexible choice of both the estimation procedure and loss function. The long horizon is set to 2 weeks and one month ahead and forecasts evaluated according to MSE loss. Bootstrap methodology is used to estimate the data's conditional predictability using GARCH models. This is then compared to predictability under a random walk and a model using the prediction bias in uncovered interest parity (UIP). We find that both exchange rates are less predictable using GARCH than using a random walk, but they are more predictable using UIP than a random walk. Predictability using GARCH is relatively higher for the 2‐weeks‐than for the 1‐month long forecast horizon. Comparing the results using a random walk to that using UIP reveals ‘pockets’ of predictability, that is, particular short horizons for which predictability using the random walk exceeds that using UIP, or vice versa. Overall, GBP/USD returns appear more predictable than DEM/USD returns at short horizons. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
This paper presents an autoregressive fractionally integrated moving‐average (ARFIMA) model of nominal exchange rates and compares its forecasting capability with the monetary structural models and the random walk model. Monthly observations are used for Canada, France, Germany, Italy, Japan and the United Kingdom for the period of April 1973 through December 1998. The estimation method is Sowell's (1992) exact maximum likelihood estimation. The forecasting accuracy of the long‐memory model is formally compared to the random walk and the monetary models, using the recently developed Harvey, Leybourne and Newbold (1997) test statistics. The results show that the long‐memory model is more efficient than the random walk model in steps‐ahead forecasts beyond 1 month for most currencies and more efficient than the monetary models in multi‐step‐ahead forecasts. This new finding strongly suggests that the long‐memory model of nominal exchange rates be studied as a viable alternative to the conventional models. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
In the last decade, neural networks have emerged from an esoteric instrument in academic research to a rather common tool assisting auditors, investors, portfolio managers and investment advisors in making critical financial decisions. It is apparent that a better understanding of the network's performance and limitations would help both researchers and practitioners in analysing real‐world problems. Unlike many existing studies which focus on a single type of network architecture, this study evaluates and compares the performance of models based on two competing neural network architectures, the multi‐layered feedforward neural network (MLFN) and general regression neural network (GRNN). Our empirical evaluation measures the network models' strength on the prediction of currency exchange correlation with respect to a variety of statistical tests including RMSE, MAE, U statistic, Theil's decomposition test, Henriksson–Merton market timing test and Fair–Shiller informational content test. Results of experiments suggest that the selection of proper architectural design may contribute directly to the success in neural network forecasting. In addition, market timing tests indicate that both MLFN and GRNN models have economically significant values in predicting the exchange rate correlation. On the other hand, informational content tests discover that the neural network models based on different architectures capture useful information not found in each other and the information sets captured by the two network designs are independent of one another. An auxiliary experiment is developed and confirms the possible synergetic effect from combining forecasts made by the two different network architectures and from incorporating information from an implied correlation model into the neural network forecasts. Implied correlation and random walk models are also included in our empirical experiment for benchmark comparison. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
10.
Youngjin Hwang 《Journal of forecasting》2017,36(5):581-596
The specification choices of vector autoregressions (VARs) in forecasting are often not straightforward, as they are complicated by various factors. To deal with model uncertainty and better utilize multiple VARs, this paper adopts the dynamic model averaging/selection (DMA/DMS) algorithm, in which forecasting models are updated and switch over time in a Bayesian manner. In an empirical application to a pool of Bayesian VAR (BVAR) models whose specifications include level and difference, along with differing lag lengths, we demonstrate that specification‐switching VARs are flexible and powerful forecast tools that yield good performance. In particular, they beat the overall best BVAR in most cases and are comparable to or better than the individual best models (for each combination of variable, forecast horizon, and evaluation metrics) for medium‐ and long‐horizon forecasts. We also examine several extensions in which forecast model pools consist of additional individual models in partial differences as well as all level/difference models, and/or time variations in VAR innovations are allowed, and discuss the potential advantages and disadvantages of such specification choices. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
Gabriele Di Filippo 《Journal of forecasting》2015,34(8):619-648
The paper forecasts consumer price inflation in the euro area (EA) and in the USA between 1980:Q1 and 2012:Q4 based on a large set of predictors, with dynamic model averaging (DMA) and dynamic model selection (DMS). DMA/DMS allows not solely for coefficients to change over time, but also for changes in the entire forecasting model over time. DMA/DMS provides on average the best inflation forecasts with regard to alternative approaches (such as the random walk). DMS outperforms DMA. These results are robust for different sample periods and for various forecast horizons. The paper highlights common features between the USA and the EA. First, two groups of predictors forecast inflation: temporary fundamentals that have a frequent impact on inflation but only for short time periods; and persistent fundamentals whose switches are less frequent over time. Second, the importance of some variables (particularly international food commodity prices, house prices and oil prices) as predictors for consumer price index inflation increases when such variables experience large shocks. The paper also shows that significant differences prevail in the forecasting models between the USA and the EA. Such differences can be explained by the structure of these respective economies. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
The paper proposes a simulation‐based approach to multistep probabilistic forecasting, applied for predicting the probability and duration of negative inflation. The essence of this approach is in counting runs simulated from a multivariate distribution representing the probabilistic forecasts, which enters the negative inflation regime. The marginal distributions of forecasts are estimated using the series of past forecast errors, and the joint distribution is obtained by a multivariate copula approach. This technique is applied for estimating the probability of negative inflation in China and its expected duration, with the marginal distributions computed by fitting weighted skew‐normal and two‐piece normal distributions to autoregressive moving average ex post forecast errors and using the multivariate Student t copula. 相似文献
13.
We examine the potential gains of using exchange rate forecast models and forecast combination methods in the management of currency portfolios for three exchange rates: the euro versus the US dollar, the British pound, and the Japanese yen. We use a battery of econometric specifications to evaluate whether optimal currency portfolios implied by trading strategies based on exchange rate forecasts outperform single currencies and the equally weighted portfolio. We assess the differences in profitability of optimal currency portfolios for different types of investor preferences, two trading strategies, mean squared error‐based composite forecasts, and different forecast horizons. Our results indicate that there are clear benefits of integrating exchange rate forecasts from state‐of‐the‐art econometric models in currency portfolios. These benefits vary across investor preferences and prediction horizons but are rather similar across trading strategies. 相似文献
14.
This paper utilizes for the first time age‐structured human capital data for economic growth forecasting. We concentrate on pooled cross‐country data of 65 countries over six 5‐year periods (1970–2000) and consider specifications chosen by model selection criteria, Bayesian model averaging methodologies based on in‐sample and out‐of‐sample goodness of fit and on adaptive regression by mixing. The results indicate that forecast averaging and exploiting the demographic dimension of education data improve economic growth forecasts systematically. In particular, the results are very promising for improving economic growth predictions in developing countries. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
15.
This paper undertakes a comprehensive examination of 10 measures of core inflation and evaluates which measure produces the best forecast of headline inflation out‐of‐sample. We use the Personal Consumption Expenditure Price Index as our measure of inflation. We use two sets of components (17 and 50) of the Personal Consumption Expenditure Price Index to construct these core inflation measures and evaluate these measures at the three time horizons (6, 12 and 24 months) most relevant for monetary policy decisions. The best measure of core inflation for both sets of components and over all time horizons uses weights based on the first principal component of the disaggregated (component‐level) prices. Interestingly, the results vary by the number of components used; when more components are used the weights based on the persistence of each component is statistically equivalent to the weights generated by the first principal component. However, those forecasts using the persistence of 50 components are statistically worse than those generated using the first principal component of 17 components. The statistical superiority of the principal component method is due to the fact that it extracts (in the first principal component) the common source of variation in the component level prices that accurately describes trend inflation over the next 6–24 months. 相似文献
16.
This paper employs a non‐parametric method to forecast high‐frequency Canadian/US dollar exchange rate. The introduction of a microstructure variable, order flow, substantially improves the predictive power of both linear and non‐linear models. The non‐linear models outperform random walk and linear models based on a number of recursive out‐of‐sample forecasts. Two main criteria that are applied to evaluate model performance are root mean squared error (RMSE) and the ability to predict the direction of exchange rate moves. The artificial neural network (ANN) model is consistently better in RMSE to random walk and linear models for the various out‐of‐sample set sizes. Moreover, ANN performs better than other models in terms of percentage of correctly predicted exchange rate changes. The empirical results suggest that optimal ANN architecture is superior to random walk and any linear competing model for high‐frequency exchange rate forecasting. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Liam J. A. Lenten 《Journal of forecasting》2010,29(6):556-572
In the light of the still topical nature of ‘bananas and petrol’ being blamed for driving much of the inflationary pressures in Australia in recent times, the ‘headline’ and ‘underlying’ rates of inflation are scrutinised in terms of forecasting accuracy. A general structural time‐series modelling strategy is applied to estimate models for alternative types of Consumer Price Index (CPI) measures. From this, out‐of‐sample forecasts are generated from the various models. The underlying forecasts are subsequently adjusted to facilitate comparison. The Ashley, Granger and Schmalensee (1980) test is then performed to determine whether there is a statistically significant difference between the root mean square errors of the models. The results lend weight to the recent findings of Song (2005) that forecasting models using underlying rates are not systematically inferior to those based on the headline rate. In fact, strong evidence is found that underlying measures produce superior forecasts. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, we adopt a panel vector autoregressive (PVAR) approach to estimating and forecasting inflation dynamics in four different sectors—industry, services, construction and agriculture—across the euro area and its four largest member states: France, Germany, Italy and Spain. By modelling inflation together with real activity, employment and wages at the sectoral level, we are able to disentangle the role of unit labour costs and profit margins as the fundamental determinants of price dynamics on the supply side. In out‐of‐sample forecast comparisons, the PVAR approach performs well against popular alternatives, especially at a short forecast horizon and relative to standard VAR forecasts based on aggregate economy‐wide data. Over longer forecast horizons, the accuracy of the PVAR model tends to decline relative to that of the univariate alternatives, while it remains high relative to the aggregate VAR forecasts. We show that these findings are driven by the event of the Great Recession. Our qualitative results carry over to a multi‐country extension of the PVAR approach. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Kevin Fergusson 《Journal of forecasting》2020,39(1):37-46
In this paper we investigate the applicability of several continuous-time stochastic models to forecasting inflation rates with horizons out to 20 years. While the models are well known, new methods of parameter estimation and forecasts are supplied, leading to rigorous testing of out-of-sample inflation forecasting at short and long time horizons. Using US consumer price index data we find that over longer forecasting horizons—that is, those beyond 5 years—the log-normal index model having Ornstein–Uhlenbeck drift rate provides the best forecasts. 相似文献
20.
This paper develops a dynamic factor model that uses euro area country-specific information on output and inflation to estimate an area-wide measure of the output gap. Our model assumes that output and inflation can be decomposed into country-specific stochastic trends and a common cyclical component. Comovement in the trends is introduced by imposing a factor structure on the shocks to the latent states. We moreover introduce flexible stochastic volatility specifications to control for heteroscedasticity in the measurement errors and innovations to the latent states. Carefully specified shrinkage priors allow for pushing the model towards a homoscedastic specification, if supported by the data. Our measure of the output gap closely tracks other commonly adopted measures, with small differences in magnitudes and timing. To assess whether the model-based output gap helps in forecasting inflation, we perform an out-of-sample forecasting exercise. The findings indicate that our approach yields superior inflation forecasts, both in terms of point and density predictions. 相似文献