首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
    
The problem of multicollinearity produces undesirable effects on ordinary least squares (OLS), Almon and Shiller estimators for distributed lag models. Therefore, we introduce a Liu‐type Shiller estimator to deal with multicollinearity for distributed lag models. Moreover, we theoretically compare the predictive performance of the Liu‐type Shiller estimator with OLS and the Shiller estimators by the prediction mean square error criterion under the target function. Furthermore, an extensive Monte Carlo simulation study is carried out to evaluate the predictive performance of the Liu‐type Shiller estimator.  相似文献   

2.
    
When the interdependence of disturbances is present in a regression model, the pattern of sample residuals contains information which is useful in the prediction of post‐sample drawings and when multicollinearity among regressors is also present, it is useful to use biased regression estimators. This information is exploited in the biased predictors derived here. Also, the predictive performance of various biased predictors with correlated errors is discussed and all pair‐wise comparisons are made among these predictors. The theoretical results are illustrated by a numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
    
The TFT‐LCD (thin‐film transistor–liquid crystal display) industry is one of the key global industries with products that have high clock speed. In this research, the LCD monitor market is considered for an empirical study on hierarchical forecasting (HF). The proposed HF methodology consists of five steps. First, the three hierarchical levels of the LCD monitor market are identified. Second, several exogenously driven factors that significantly affect the demand for LCD monitors are identified at each level of product hierarchy. Third, the three forecasting techniques—regression analysis, transfer function, and simultaneous equations model—are combined to forecast future demand at each hierarchical level. Fourth, various forecasting approaches and disaggregating proportion methods are adopted to obtain consistent demand forecasts at each hierarchical level. Finally, the forecast errors with different forecasting approaches are assessed in order to determine the best forecasting level and the best forecasting approach. The findings show that the best forecast results can be obtained by using the middle‐out forecasting approach. These results could guide LCD manufacturers and brand owners on ways to forecast future market demands. Copyright 2008 John Wiley & Sons, Ltd.  相似文献   

4.
    
A sample‐based method in Kolsrud (Journal of Forecasting 2007; 26 (3): 171–188) for the construction of a time‐simultaneous prediction band for a univariate time series is extended to produce a variable‐ and time‐simultaneous prediction box for a multivariate time series. A measure of distance based on the L ‐norm is applied to a learning sample of multivariate time trajectories, which can be mean‐ and/or variance‐nonstationary. Based on the ranking of distances to the centre of the sample, a subsample of the most central multivariate trajectories is selected. A prediction box is constructed by circumscribing the subsample with a hyperrectangle. The fraction of central trajectories selected into the subsample can be calibrated by bootstrap such that the expected coverage of the box equals a prescribed nominal level. The method is related to the concept of data depth, and thence modified to increase coverage. Applications to simulated and empirical data illustrate the method, which is also compared to several other methods in the literature adapted to the multivariate setting. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
    
In this paper we extend the Baillie and Baltagi ( 1999 ) paper (Prediction from the regression model with one‐way error components. In Analysis of Panels and Limited Dependent Variables Models, Hsiao C, Lahiri K, Lee LF, Pesaran H (eds). Cambridge University Press, Cambridge, UK). In particular, we derive six predictors for the two‐way error components model, as well as their associated asymptotic mean squared error (AMSE) of multi‐step prediction. In addition, we also provide both theoretical and simulation evidence as to the relative efficiency of our six alternative predictors. The adequacy of the prediction AMSE formula is also investigated by the use of Monte Carlo methods which indicate that the ordinary optimal predictors perform well for various accuracy criteria. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We propose a new class of limited information estimators built upon an explicit trade‐off between data fitting and a priori model specification. The estimators offer the researcher a continuum of estimators that range from an extreme emphasis on data fitting and robust reduced‐form estimation to the other extreme of exact model specification and efficient estimation. The approach used to generate the estimators illustrates why ULS often outperforms 2SLS‐PRRF even in the context of a correctly specified model, provides a new interpretation of 2SLS, and integrates Wonnacott and Wonnacott's (1970) least weighted variance estimators with other techniques. We apply the new class of estimators to Klein's Model I and generate forecasts. We find for this example that an emphasis on specification (as opposed to data fitting) produces better out‐of‐sample predictions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
    
We examine different approaches to forecasting monthly US employment growth in the presence of many potentially relevant predictors. We first generate simulated out‐of‐sample forecasts of US employment growth at multiple horizons using individual autoregressive distributed lag (ARDL) models based on 30 potential predictors. We then consider different methods from the extant literature for combining the forecasts generated by the individual ARDL models. Using the mean square forecast error (MSFE) metric, we investigate the performance of the forecast combining methods over the last decade, as well as five periods centered on the last five US recessions. Overall, our results show that a number of combining methods outperform a benchmark autoregressive model. Combining methods based on principal components exhibit the best overall performance, while methods based on simple averaging, clusters, and discount MSFE also perform well. On a cautionary note, some combining methods, such as those based on ordinary least squares, often perform quite poorly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This paper addresses the issue of forecasting individual items within a product line; where each line includes several independent but closely related products. The purpose of the research was to reduce the overall forecasting burden by developing and assessing schemes of disaggregating forecasts of a total product line to the related individual items. Measures were developed to determine appropriate disaggregated methodologies and to compare the forecast accuracy of individual product forecasts versus disaggregated totals. Several of the procedures used were based upon extensions of the combination of forecast research and applied to disaggregations of total forecasts of product lines. The objective was to identify situations when it was advantageous to produce disaggregated forecasts, and if advantageous, which method of disaggregation to utilize. This involved identification of the general conceptual characteristics within a set of product line data that might cause a disaggregation method to produce relatively accurate forecasts. These conceptual characteristics provided guidelines for forecasters on how to select a disaggregation method and under what conditions a particular method is applicable.  相似文献   

9.
    
More and more ensemble models are used to forecast business failure. It is generally known that the performance of an ensemble relies heavily on the diversity between each base classifier. To achieve diversity, this study uses kernel‐based fuzzy c‐means (KFCM) to organize firm samples and designs a hierarchical selective ensemble model for business failure prediction (BFP). First, three KFCM methods—Gaussian KFCM (GFCM), polynomial KFCM (PFCM), and Hyper‐tangent KFCM (HFCM)—are employed to partition the financial data set into three data sets. A neural network (NN) is then adopted as a basis classifier for BFP, and three sets, which are derived from three KFCM methods, are used to build three classifier pools. Next, classifiers are fused by the two‐layer hierarchical selective ensemble method. In the first layer, classifiers are ranked based on their prediction accuracy. The stepwise forward selection method is employed to selectively integrate classifiers according to their accuracy. In the second layer, three selective ensembles in the first layer are integrated again to acquire the final verdict. This study employs financial data from Chinese listed companies to conduct empirical research, and makes a comparative analysis with other ensemble models and all its component models. It is the conclusion that the two‐layer hierarchical selective ensemble is good at forecasting business failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号