首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In recent years the singular spectrum analysis (SSA) technique has been further developed and applied to many practical problems. The aim of this research is to extend and apply the SSA method, using the UK Industrial Production series. The performance of the SSA and multivariate SSA (MSSA) techniques was assessed by applying it to eight series measuring the monthly seasonally unadjusted industrial production for the main sectors of the UK economy. The results are compared with those obtained using the autoregressive integrated moving average and vector autoregressive models. We also develop the concept of causal relationship between two time series based on the SSA techniques. We introduce several criteria which characterize this causality. The criteria and tests are based on the forecasting accuracy and predictability of the direction of change. The proposed tests are then applied and examined using the UK industrial production series. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
    
We provide a comprehensive study of out‐of‐sample forecasts for the EUR/USD exchange rate based on multivariate macroeconomic models and forecast combinations. We use profit maximization measures based on directional accuracy and trading strategies in addition to standard loss minimization measures. When comparing predictive accuracy and profit measures, data snooping bias free tests are used. The results indicate that forecast combinations, in particular those based on principal components of forecasts, help to improve over benchmark trading strategies, although the excess return per unit of deviation is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
    
In this paper, an optimized multivariate singular spectrum analysis (MSSA) approach is proposed to find leading indicators of cross‐industry relations between 24 monthly, seasonally unadjusted industrial production (IP) series for German, French, and UK economies. Both recurrent and vector forecasting algorithms of horizontal MSSA (HMSSA) are considered. The results from the proposed multivariate approach are compared with those obtained via the optimized univariate singular spectrum analysis (SSA) forecasting algorithm to determine the statistical significance of each outcome. The data are rigorously tested for normality, seasonal unit root hypothesis, and structural breaks. The results are presented such that users can not only identify the most appropriate model based on the aim of the analysis, but also easily identify the leading indicators for each IP variable in each country. Our findings show that, for all three countries, forecasts from the proposed MSSA algorithm outperform the optimized SSA algorithm in over 70% of cases. Accordingly, this new approach succeeds in identifying leading indicators and is a viable option for selecting the SSA choices L and r, which minimizes a loss function.  相似文献   

4.
This paper presents short‐term forecasting methods applied to electricity consumption in Brazil. The focus is on comparing the results obtained after using two distinct approaches: dynamic non‐linear models and econometric models. The first method, that we propose, is based on structural statistical models for multiple time series analysis and forecasting. It involves non‐observable components of locally linear trends for each individual series and a shared multiplicative seasonal component described by dynamic harmonics. The second method, adopted by the electricity power utilities in Brazil, consists of extrapolation of the past data and is based on statistical relations of simple or multiple regression type. To illustrate the proposed methodology, a numerical application is considered with real data. The data represents the monthly industrial electricity consumption in Brazil from the three main power utilities: Eletropaulo, Cemig and Light, situated at the major energy‐consuming states, Sao Paulo, Rio de Janeiro and Minas Gerais, respectively, in the Brazilian Southeast region. The chosen time period, January 1990 to September 1994, corresponds to an economically unstable period just before the beginning of the Brazilian Privatization Program. Implementation of the algorithms considered in this work was made via the statistical software S‐PLUS. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
    
The paper presents a comparative real‐time analysis of alternative indirect estimates relative to monthly euro area employment. In the experiment quarterly employment is temporally disaggregated using monthly unemployment as related series. The strategies under comparison make use of the contribution of sectoral data of the euro area and its six larger member states. The comparison is carried out among univariate temporal disaggregations of the Chow and Lin type and multivariate structural time series models of small and medium size. Specifications in logarithms are also systematically assessed. All multivariate set‐ups, up to 49 series modelled simultaneously, are estimated via the EM algorithm. Main conclusions are that mean revision errors of disaggregated estimates are overall small, a gain is obtained when the model strategy takes into account the information by both sector and member state and that larger multivariate set‐ups perform very well, with several advantages with respect to simpler models.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper analyzes the relative performance of multi‐step AR forecasting methods in the presence of breaks and data revisions. Our Monte Carlo simulations indicate that the type and timing of the break affect the relative accuracy of the methods. The iterated autoregressive method typically produces more accurate point and density forecasts than the alternative multi‐step AR methods in unstable environments, especially if the parameters are subject to small breaks. This result holds regardless of whether data revisions add news or reduce noise. Empirical analysis of real‐time US output and inflation series shows that the alternative multi‐step methods only episodically improve upon the iterated method.  相似文献   

7.
Although both direct multi‐step‐ahead forecasting and iterated one‐step‐ahead forecasting are two popular methods for predicting future values of a time series, it is not clear that the direct method is superior in practice, even though from a theoretical perspective it has lower mean squared error (MSE). A given model can be fitted according to either a multi‐step or a one‐step forecast error criterion, and we show here that discrepancies in performance between direct and iterative forecasting arise chiefly from the method of fitting, and is dictated by the nuances of the model's misspecification. We derive new formulas for quantifying iterative forecast MSE, and present a new approach for assessing asymptotic forecast MSE. Finally, the direct and iterative methods are compared on a retail series, which illustrates the strengths and weaknesses of each approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
    
Parameter instability and model uncertainty are two key problems affecting forecasting outcomes. In this paper, we propose a time-dependent weighted least squares with ridge constraint (TWLS-Ridge) to solve the above two problems in the forecasting procedure. The new TWLS-Ridge approach is applied to the heterogenous autoregressive realized volatility model and its various extensions. The empirical results suggest that TWLS-Ridge produces more accurate volatility forecasts than several alternative models dealing with parameter instability and model uncertainty. The superior performance of TWLS-Ridge is robust under different forecast horizons, evaluation periods, and loss functions. An investor with mean–variance preference can improve utility using TWLS-Ridge forecasts of oil volatility instead of ordinary least squares model forecasts.  相似文献   

9.
    
In this study building on earlier work on the properties and performance of the univariate Theta method for a unit root data‐generating process we: (a) derive new theoretical formulations for the application of the method on multivariate time series; (b) investigate the conditions for which the multivariate Theta method is expected to forecast better than the univariate one; (c) evaluate through simulations the bivariate form of the method; and (d) evaluate this latter model in real macroeconomic and financial time series. The study provides sufficient empirical evidence to illustrate the suitability of the method for vector forecasting; furthermore it provides the motivation for further investigation of the multivariate Theta method for higher dimensions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
    
Artificial neural network modelling has recently attracted much attention as a new technique for estimation and forecasting in economics and finance. The chief advantages of this new approach are that such models can usually find a solution for very complex problems, and that they are free from the assumption of linearity that is often adopted to make the traditional methods tractable. In this paper we compare the performance of Back‐Propagation Artificial Neural Network (BPN) models with the traditional econometric approaches to forecasting the inflation rate. Of the traditional econometric models we use a structural reduced‐form model, an ARIMA model, a vector autoregressive model, and a Bayesian vector autoregression model. We compare each econometric model with a hybrid BPN model which uses the same set of variables. Dynamic forecasts are compared for three different horizons: one, three and twelve months ahead. Root mean squared errors and mean absolute errors are used to compare quality of forecasts. The results show the hybrid BPN models are able to forecast as well as all the traditional econometric methods, and to outperform them in some cases. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
    
In this paper we suggest a framework to assess the degree of reliability of provisional estimates as forecasts of final data, and we re‐examine the question of the most appropriate way in which available data should be used for ex ante forecasting in the presence of a data‐revision process. Various desirable properties for provisional data are suggested, as well as procedures for testing them, taking into account the possible non‐stationarity of economic variables. For illustration, the methodology is applied to assess the quality of the US M1 data production process and to derive a conditional model whose performance in forecasting is then tested against other alternatives based on simple transformations of provisional data or of past final data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
    
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out‐of‐sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the effects of disaggregation on forecast accuracy for nonstationary time series using dynamic factor models. We compare the forecasts obtained directly from the aggregated series based on its univariate model with the aggregation of the forecasts obtained for each component of the aggregate. Within this framework (first obtain the forecasts for the component series and then aggregate the forecasts), we try two different approaches: (i) generate forecasts from the multivariate dynamic factor model and (ii) generate the forecasts from univariate models for each component of the aggregate. In this regard, we provide analytical conditions for the equality of forecasts. The results are applied to quarterly gross domestic product (GDP) data of several European countries of the euro area and to their aggregated GDP. This will be compared to the prediction obtained directly from modeling and forecasting the aggregate GDP of these European countries. In particular, we would like to check whether long‐run relationships between the levels of the components are useful for improving the forecasting accuracy of the aggregate growth rate. We will make forecasts at the country level and then pool them to obtain the forecast of the aggregate. The empirical analysis suggests that forecasts built by aggregating the country‐specific models are more accurate than forecasts constructed using the aggregated data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
    
We investigate the seasonal unit root properties of monthly industrial production series for 16 OECD countries within the context of a structural time series model. A basic version of this model assumes that there are 11 such seasonal unit roots. We propose to use model selection criteria (AIC and BIC) to examine if one or more of these are in fact stationary. We generally find that when these criteria indicate that a smaller number of seasonal unit roots can be assumed and hence that some seasonal roots are stationary, the corresponding model also gives more accurate one‐step‐ahead forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
It is well known that, as calculated using the Kalman filter recurrence relationships, the posterior parameter variance and the adaptive vector of observable constant dynamic linear models converge to limiting values. However, most proofs are tortuous, some have subtle errors and some relate only to specific cases. An elegant probabilistic convergence proof demonstrates that the limit is independent of the initial parametric prior. The result is extended to a class of multivariate dynamic linear models. Finally the proof is shown to apply to many non-observable constant DLMs. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we present a comparison between the forecasting performances of the normalization and variance stabilization method (NoVaS) and the GARCH(1,1), EGARCH(1,1) and GJR‐GARCH(1,1) models. Hence the aim of this study is to compare the out‐of‐sample forecasting performances of the models used throughout the study and to show that the NoVaS method is better than GARCH(1,1)‐type models in the context of out‐of sample forecasting performance. We study the out‐of‐sample forecasting performances of GARCH(1,1)‐type models and NoVaS method based on generalized error distribution, unlike normal and Student's t‐distribution. Also, what makes the study different is the use of the return series, calculated logarithmically and arithmetically in terms of forecasting performance. For comparing the out‐of‐sample forecasting performances, we focused on different datasets, such as S&P 500, logarithmic and arithmetic B?ST 100 return series. The key result of our analysis is that the NoVaS method performs better out‐of‐sample forecasting performance than GARCH(1,1)‐type models. The result can offer useful guidance in model building for out‐of‐sample forecasting purposes, aimed at improving forecasting accuracy.  相似文献   

17.
    
A parsimonious method of exponential smoothing is introduced for time series generated from a combination of local trends and local seasonal effects. It is compared with the additive version of the Holt–Winters method of forecasting on a standard collection of real time series. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
    
In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.  相似文献   

19.
    
There is growing interest in exploring potential forecast gains from the nonlinear structure of multivariate threshold autoregressive (MTAR) models. A least squares‐based statistical test has been proposed in the literature. However, previous studies on univariate time series analysis show that classical nonlinearity tests are often not robust to additive outliers. The outlier problem is expected to pose similar difficulties for multivariate nonlinearity tests. In this paper, we propose a new and robust MTAR‐type nonlinearity test, and derive the asymptotic null distribution of the test statistic. A Monte Carlo experiment is carried out to compare the power of the proposed test with that of the least squares‐based test under the influence of additive time series outliers. The results indicate that the proposed method is preferable to the classical test when observations are contaminated by outliers. Finally, we provide illustrative examples by applying the statistical tests to two real datasets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper is a counterfactual analysis investigating the consequences of the formation of a currency union for Canada and the USA: whether outputs increase and prices decrease if these countries form a currency union. We use a two‐country cointegrated model to conduct the counterfactual analysis, where the conditional forecasts are generated based on the Gaussian assumption. To deal with structural breaks and model uncertainty, conditional forecasts are generated from different models/estimation windows and the model‐averaging technique is used to combine the forecasts. We also examine the robustness of our results to parameter uncertainty using the wild bootstrap method. The results show that forming the currency union would probably boost the Canadian economy, whereas it would not have significant effects on US output or Canadian and US price levels. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号