首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
古汉山矿16采区原始瓦斯含量高、压力大且透气性差,穿层钻孔抽采效果不佳,迫切需要一种行之有效的增透抽采技术。本文结合矿井在瓦斯抽采方面存在的问题,就高压水力冲孔造穴增透技术在1604底抽巷的应用展开分析,以促进抽采效果的提高。  相似文献   

2.
为了提升突出煤层瓦斯治理效率,增加采面回采巷道掘进速度,在9141底板瓦斯抽放巷内施工水力卸压钻孔对突出煤层进行增透,并对水力冲孔卸压钻孔布置进行设计,有效提升了煤层瓦斯抽采效果。结果表明,采用水力冲孔卸压技术后,瓦斯钻孔流量、浓度为普通穿层瓦斯抽采钻孔流量的2倍以上,流量衰减系数为未冲孔卸压瓦斯抽采钻孔的52%;9141回风巷在水力冲孔卸压段月进尺可达85 m,进尺量较普通穿层钻孔抽采段增加35 m。  相似文献   

3.
为提高白皎煤矿井下瓦斯抽采效果,在白胶煤矿238底板道进行了穿层条带水力压裂技术应用,对B4煤层进行水力压裂增透。压裂最大压力达24.6MPa,单孔最大注入液量113.8m3,抽采纯量提高了2.27倍,在抽采时间不变的情况下,钻孔数量可减少56%。结果表明,达到了压裂设计方案要求,增透卸压效果显著,水力压裂在白皎煤矿是适用的,下一步要进行大面积推广实施,以充分发挥水力压裂技术的效果。  相似文献   

4.
【目的】为了提高低渗高突块段煤层瓦斯抽采效果,保证矿井安全生产,对于不具备保护层的开采地区,采用水力冲孔能起到很好的卸压增透效果。【方法】利用压降法实测考察,确定了水力冲孔的有效影响半径并依此布孔,进行增透效果考察。【结果】现场应用结果表明:经水力冲孔后,提高了煤层的透气性,瓦斯抽采浓度提高10.1倍,抽采纯量提高4.9倍,煤层瓦斯含量下降35.6%~42.4%,释放煤体中积聚的瓦斯膨胀能,减弱和消除突出的危险性。【结论】研究结果可为同类型地质条件下水力冲孔技术提供理论和工程指导。  相似文献   

5.
康秀华 《河南科技》2013,(4):67+114
为解决复合突出煤层采面回采时发生瓦斯动力灾害这一难题,在掘进期间至回采前,采取了本煤层区域抽放钻孔措施。同时在煤层中进行高压水力压裂增透措施后进行瓦斯预抽,瓦斯预抽率达到45.36%。在钻孔控制范围煤层残余瓦斯含量6.4413m3/t.控制了煤与瓦斯突出动力灾害的发生,确保了采面的安全回采。  相似文献   

6.
随着瓦斯抽采技术的发展和提高,其使用性和针对性越来越强,对于煤层不同的特性、不同的结构、不同的透气性应有选择地使用不同的瓦斯抽采技术。目前,我国对瓦斯的抽采除少部分能够在地面施工外,绝大多数还是要在煤矿井下大量钻孔才能对瓦斯进行有效抽放,瓦斯抽采技术的选择和钻孔的合理布置都是影响瓦斯抽采效果的关建因素。  相似文献   

7.
针对新安煤矿11240采煤工作面上巷进入厚煤区,上隅角瓦斯浓度居高不下的实际情况,为最大限度地提高采空区瓦斯抽采效果,本文结合工作面上巷正在进行的压架作业,提出了压架期间分段预埋、回采期间分段抽采的分段式预埋管路采空区瓦斯抽采技术,通过合理确定管路的工艺参数和搭接长度,保证了上隅角顶部瓦斯的接续抽采。研究表明:分段预埋管路的有效抽采时间基本维持在10d左右,单管瓦斯抽采浓度稳定在25%~35%,抽采流量维持在1~1.8m~3/min,预埋管路工艺流程简单,抽采效果明显。  相似文献   

8.
金能煤业分公司属于煤与瓦斯突出矿井,3132综采工作面瓦斯涌出量大,且瓦斯来源主要是采空区及邻近煤层卸压瓦斯。本文以金能公司3132综采工作面为例,阐述了金能公司高位钻孔采空区瓦斯抽采技术原理、钻场布置工艺、钻孔抽采参数优化选取及现场试验过程,分析了采空区瓦斯抽采参数随时间变化规律及高位钻孔现场应用效果。现场试验表明,高位抽采钻孔抽采采空区瓦斯效果较为明显,瓦斯抽采浓度最大为43.1%,平均为35.0%,瓦斯抽采纯量平均为8.35m3/min,瓦斯抽采率平均达到34.6%,工作面回采期间回风流瓦斯浓度降到0.36%,使综采工作面回风巷瓦斯浓度及上隅角瓦斯浓度超限问题得到了有效解决。  相似文献   

9.
近年来,大平煤矿在开采过程中不断探索并初步掌握了一些豫西"三软"煤层瓦斯抽放技术,但随着开采深度的增加,煤与瓦斯突出成为制约煤矿安全生产的重大问题。为了提高穿层钻孔预抽效果,降低穿层钻孔抽放浓度衰减周期,为此,我们在21121底板抽放巷摸索影响穿层钻孔抽放浓度变化的因素,在积极改进封孔工艺的基础上开展了穿层钻孔水力压裂增透技术研究。  相似文献   

10.
《防治煤与瓦斯突出规定》第六条规定:"突出矿井采掘工作做到不掘突出头,不采突出面。未按要求采取区域综合防突措施的,严禁进行采掘作业。"及《国家安全监督管理总局等四部委关于印发煤矿与瓦斯抽采达标暂行规定的通知》第三条规定:"应当进行瓦斯抽采的煤层必须先抽采瓦斯;抽采效果达到标准要求方可安排采掘作业。但目前我国的瓦斯抽采封孔装备存在一些的问题导致钻孔漏气现象严重,使得矿井瓦斯抽采浓度达不到抽采要求。鉴于此,白庙矿提出了一种新型煤层瓦斯抽放封孔技术装置的设计想法。本文针对新型煤层瓦斯抽放封孔技术装置的设计在白庙矿的研究与应用作简要探讨。  相似文献   

11.
中马村矿二1煤层结构复杂,瓦斯含量高,煤质较软,煤层透气性差,常规的本煤层水力压裂瓦斯抽采效果差。为了解决软煤瓦斯抽采的难题,本文在27021工作面开展了虚拟储层水力强化作业试验,分别从瓦斯抽采量、瓦斯抽采强度、排出煤粉量三个指标进行效果分析。试验结果表明,虚拟储层水力强化改造后,瓦斯抽采量大幅提升,抽采效果明显,同时煤储层地应力得到平衡,避免煤层应力过于集中于一点或一个方向。  相似文献   

12.
盐井塘煤矿实施钻孔预抽煤层瓦斯的区域防突措施过程中,不断出现问题,影响矿井瓦斯抽采效果。针对问题,摸索改进相关工艺,按新的工艺要求,布置、开拓25采区的抽采工程。经检验,25采区的瓦斯抽采效果明显提高,有效地控制了煤与瓦斯突出,保证了矿井安全生产。  相似文献   

13.
在瓦斯治理过程中,根据111304综采工作面刀把式的布置特点,结合煤层瓦斯赋存、瓦斯涌出情况进行分析,对工作面采空区瓦斯采取不同抽采方式,对工作面西段刀把回采阶段采用上风巷顶板倾向钻孔对采空区瓦斯进行抽采,在工作面东段正常块段采用高抽巷对采空区瓦斯进行抽采。本文主要分析了两种瓦斯治理方式,保证了工作面安全回采,实现了采空区瓦斯治理效果,为类似条件下综采工作面瓦斯治理提供了有益参考。  相似文献   

14.
合理的瓦斯防治措施,对有效减少瓦斯事故的发生具有重要意义。为了实现研究区瓦斯的有效抽采,在对研究区构造特征、瓦斯特征、煤层特征等进行分析的基础上,结合研究区采掘进度安排,提出集危险性预测、抽采措施、效果评价为一体的瓦斯综合防治措施。并在阜生矿1103运输巷采掘面进行现场实施,实施结果表明:通过有计划抽采后,煤层瓦斯含量降低至8m3/t以下,达到了抽采目的,体现了该防治措施的可行性,可为临近区掘进面瓦斯抽采提供参考。  相似文献   

15.
高位钻孔瓦斯抽采是上隅角及工作面瓦斯超限治理的重要手段,文章以新安矿为研究背景,分析了影响高位钻孔瓦斯抽采效果的关键性因素,通过理论分析与计算、现场抽采试验研究了高位瓦斯抽采钻孔终孔的合理层位。研究得出:高位钻孔终孔合理层位应落在距煤层顶板15~28.1m,距风巷巷帮距离应控制在30.6~44.5m范围内。  相似文献   

16.
结合渝阳煤矿煤层松软低渗的地质特征,设计了穿层钻孔水力压裂方案并进行现场实施,分析了水力压裂曲线特征及其原因,并通过多种方式检验了水力压裂效果。试验证明了穿层钻孔水力压裂可有效提高松软低透煤层透气性和瓦斯抽采效果,为煤矿安全生产提供技术保障。  相似文献   

17.
为保障煤矿安全生产,防范和制止重大煤矿瓦斯事故的发生,国家一度将对煤矿瓦斯的有效治理放在煤矿生产的首要位置,而煤矿瓦斯抽采技术不仅降低了其在井下和地面的排放量和浓密,减少了空气污染,有效控制了因浓度超标而引发事故的可能,同时也可变害为利,使通过专用管路抽采至地面的煤炭伴生资源加以开发利用。虽然煤矿瓦斯抽采技术在我国已历经多年的探索和研究,随着抽采技术的发展的提高,其使用性和针对性越来越强,但仍不足以满足我国采煤量大的特点,今后我国煤矿瓦斯抽采技术应从多方面不断地加以完善和提高。  相似文献   

18.
为了有效地对瓦斯进行抽采,确保煤矿的安全生产,以某煤矿1231工作面为例,采用钻孔瓦斯压力测试的方法,依据瓦斯有效抽采半径测定原理,研究瓦斯抽采压力变化及瓦斯压降率变化。研究得出:在对瓦斯进行抽采时,距离瓦斯抽放孔越远,瓦斯压力降低幅度越慢,下降幅度越低;随着测试孔与预抽孔之间距离的增大,钻孔瓦斯压降率逐渐减小;本煤层瓦斯抽采半径为1m。  相似文献   

19.
为有效治理大采高综采工作面瓦斯涌出问题,对工作面瓦斯涌出量及其来源进行分析。同时,为解决原瓦斯治理措施顺层钻孔抽采效果不佳的问题,提出U+I型通风和高抽巷瓦斯治理方案。现场实践表明:工作面回风巷和尾巷瓦斯浓度达到工作面管理要求;高抽巷瓦斯抽采纯量随工作面推进逐步增加,呈现小幅度的波动现象,瓦斯纯量最高达到121.61m3/min,工作面瓦斯得到有效治理。  相似文献   

20.
为了对申家庄煤矿2303工作面瓦斯进行治理,保证矿井安全生产,对工作面瓦斯来源进行分析,确定主要瓦斯涌出源为采空区瓦斯。通过理论计算、数值模拟的方法,确定瓦斯富集区域,提出高位钻孔抽采技术和采空区埋管抽采技术措施,并进行了工业现场应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号