首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
通过改进的共沉淀方法成功合成了层状LiNi0.5Mn0.5O2正极材料,并对其结构、形貌以及电化学性能进行了测试。粉末X射线衍射结果表明,合成的LiNi0.5Mn0.5O2材料为层状α-NaFeO2结构,Li+和Ni2+混排很少。扫描电子显微镜结果显示,LiNi0.5Mn0.5O2材料是由形貌规则、大小均匀的亚微米级粒子构筑,粒子粒径分布在200~400 nm。另外,材料表现出了优异的电化学性能:在0.1 C的倍率下,材料的首次放电比容量为206 mAh·g-1,循环60次后,放电比容量为198 mAh·g-1,容量保持率为94.7%。即使在5 C倍率下,材料仍有157 mAh·g-1的首次放电比容量和良好的循环性能。  相似文献   

2.
通过共沉淀方法制备了不同锂含量的球形富锂正极材料Li1+x[Ni0.5Co0.2 Mn0.3]1-xO2(x=0.091,0.115,0.138).采用XRD、SEM和电池充放电测试仪研究了不同锂含量对于球形富锂正极材料结构、形貌及电化学性能的影响.结果表明:增加锂含量不会改变富锂正极材料Li1+x[Ni0.5Co0.2Mn0.3]1-xO2的晶体结构,但是随着锂含量的增加,球形粒子中一次粒子粒径逐渐增大.当x=0.115时,球形Li1.115 [Ni0.5Co0.2Mn0.3]0.885O2粒子的一次粒子大小适中,并且材料具有最佳的电化学性能.在2.0~4.8 V范围内,0.1C倍率对材料进行活化,放电比容量高达230 mAhg-1.在2.0~4.6 V范围内,0.2C循环50次后容量的保持率为84%.0.2 C,1C,2C不同倍率下的放电容量分别为209.3mAhg-1,156.1 mAhg-1和113.0mAhg-1.  相似文献   

3.
以电解二氧化锰(EMD)为锰源,分别以Li2CO3-LiOH低共熔锂盐体系、LiOH和Li2CO3为锂源,通过固相法合成尖晶石型的LiMn2O4正极材料.利用X-射线衍射(XRD)、扫描电镜(SEM)及电化学测试技术对不同条件下合成的LiMn2O4的结构、形貌及电化学性能进行了研究.结果表明,三种锂源合成的产物均为单一的尖晶石型LiMn2O4,但是由Li2CO3 -LiOH低共熔锂盐体系合成的LiMn2O4粒径均小于由LiOH和Li2CO3合成的LiMn2O4;低共熔锂盐体系合成LiMn2O4的容量、循环性能及倍率性能均优于由LiOH和Li2CO3合成的LiMn2O4.由低共熔锂盐体系合成LiMn2O4正极材料0.1C和1C的首次放电容量分别为133 mAh.g-1和110 mAh.g-1,循环30次后,容量保持率分别为87%和86%.  相似文献   

4.
采用静电纺丝和热处理技术成功制备了新型锂离子电池负极材料钛酸铜锂(Li2CuTi3O8)纳米粒子.通过扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热分析(TG-DTA)、循环伏安法(CV)、恒流充放电和电化学交流阻抗(EIS)等测试手段对材料的形貌、结构、物相及电化学性能进行了表征和研究.结果表明所制备的Li2CuTi3O8纳米粒子具有良好的立方尖晶石结构,粒度分布均匀,粒径约为100~200nm.充放电测试显示,当电流密度为25mA g-1时,Li2CuTi3O8纳米材料的首次可逆容量为245.3mAh g-1;且该电极在50,100,200,500,1 000mA g-1的电流密度下循环10次后,放电比容量分别为189.2,186.1,176.9,152.2,127.5mAh g-1当电流密度再回到25mA g-1时,比容量仍然可达到228.6mAh g-1,该材料显示出良好的循环稳定性和倍率性能,有望成为锂离子电池新型负极材料.  相似文献   

5.
采用溶胶-凝胶法制备了富锂层状材料Li1.18Ni0.15Co0.15Mn0.52O2.通过X射线衍射仪(XRD)、X-射线光电子能谱(XPS)和扫描电子显微镜(SEM)分别对材料的结构、形貌进行了分析.XRD结果表明,材料属α-NaFeO2型层状结构;XPS结果表明,材料中的Ni,Co和Mn的价态分别为+2,+3和+4价;SEM结果表明,材料颗粒尺寸分布在200~400 nm,且颗粒之间分散比较均匀,无明显的团聚现象;电化学测试结果表明,材料在使用不同电解液进行充放电时,曲线的形状相似,但是充放电容量有所不同.其中在1 mol·L-1Li PF6作为溶质,碳酸亚乙酯(EC)∶碳酸二甲酯(DMC)∶碳酸甲乙酯(EMC)=1∶1∶8(V/V)电解液作用下,材料反应更加完全、彻底,进而使得首次充电及放电容量分别为331.4 m Ah·g-1和233.6 m Ah·g-1.  相似文献   

6.
以电解二氧化锰(EMD)为锰源,分别以Li2CO3LiOH低共熔锂盐体系、LiOH和Li2CO3为锂源,通过固相法合成尖晶石型的LiMn2O4正极材料.利用X射线衍射(XRD)、扫描电镜(SEM)及电化学测试技术对不同条件下合成的LiMn2O4的结构、形貌及电化学性能进行了研究.结果表明,三种锂源合成的产物均为单一的尖晶石型LiMn2O4,但是由Li2CO3LiOH低共熔锂盐体系合成的LiMn2O4粒径均小于由LiOH和Li2CO3合成的LiMn2O4;低共熔锂盐体系合成LiMn2O4的容量、循环性能及倍率性能均优于由LiOH和Li2CO3合成的LiMn2O4.由低共熔锂盐体系合成LiMn2O4正极材料0.1 C和1 C的首次放电容量分别为133 mAh·g-1和110 mAh·g-1,循环30次后,容量保持率分别为87%和86%.  相似文献   

7.
通过液相蒸发法合成Li Ni0.5Mn1.5O4,利用XRD(粉末X-射线衍射)、SEM(扫描电子显微镜)对产物进行表征,采用循环伏安和充放电技术对其电化学性能进行评价。结果表明,利用液相蒸发法在空气氛围即可制备纯相的Li Ni0.5Mn1.5O4产物;与其他合成方法相比,液相蒸干法具有操作简单、反应物混合均匀等优点,其中800℃的产物具有良好的电化学性能。  相似文献   

8.
为了获取前躯体Mn_(0.75)Ni_(0.15)Co_(0.10)CO_3的最佳制备工艺,对共沉淀反应的pH值与氨含量最佳值进行了实验研究.实验表明:pH值为7.6,氨含量[NH_3]/[M]为0.12是材料最佳的前躯体制备工艺,所得到的前躯体球形度好,颗粒表面光滑,粒径分布均匀.为了制备电化学性能优异的正极材料,对前躯体最佳煅烧温度与配锂量进行研究.实验表明:当煅烧温度为850℃,锂含量[Li]/[M]为1.5时,所得到的富锂正极材料Li_(1.5)Mn_(0.75)Ni_(0.15)Co_(0.10)O_2球形形貌完整,具有良好的层状晶体结构.在2.0~4.8V、0.1C充放电条件下,首次放电容量为269.6mAh/g,在5C倍率下其放电比容量仍高达154.4mAh/g,显示出优异的倍率性能.  相似文献   

9.
采用改进的Hummers法合成了氧化石墨(GO),再通过水热法合成了还原氧化石墨(RGO)-InVO4纳米复合材料.采用X射线衍射(XRD)、透射电镜(TEM)和高分辨透射电镜(HRTEM)等手段对样品的组成和形貌进行了表征.分别考察了RGO-InVO4和InVO4作为锂离子电池负极材料在不同电流密度下的充放电和循环稳定性能.结果表明:RGO-InVO4电极的首次放电和充电比容量分别为1 047.5和599 mAh·g-1,而InVO4电极的首次放电和充电比容量分别为994.2和482 mAh·g-1;在不同电流密度下经过50次循环后,RGO-InVO4的放电和充电比容量分别为472.4和456.7 mAh·g-1,而InVO4的放电和充电比容量则分别为138.4和132.9 mAh·g-1.可见,RGO的引入能极大地改善InVO4的电化学性能,尤其是循环稳定性.  相似文献   

10.
以蔗糖为碳源,采用高温固相法制备了Fe位掺杂不同阳离子(Al 3+,Ni 2+和Mn2+)的LiFe0.97M0.03PO4/C(M=Al,Ni,Mn)锂离子电池正极材料.用X-射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试和电化学阻抗谱(EIS)等研究了不同阳离子Fe位掺杂(Al 3+,Ni 2+和Mn2+)对LiFePO4的结构、形貌和电化学性能的影响.结果表明:阳离子Fe位掺杂没有改变LiFePO4的晶体结构,但是减小了LiFePO4材料的粒径,最终改善了LiFePO4的电化学性能.特别是LiFe0.97Mn0.03PO4/C材料具有更好的电化学性能,在0.1C和1C下放电,LiFe0.97Mn0.03PO4/C材料的首次放电比容量分别为162mAhg-1和140mAhg-1,且1C充放电倍率下循环50次后容量保持率仍然为98%.  相似文献   

11.
以三蕊柳的休眠芽为材料,进行了萌动芽的生长,不定芽的分化,试管苗的继代培养与留茬培养,生根苗扦插和移植的研究,成功地建立起三蕊柳快速繁殖技术.研究结果证明:MS+BAO.1mg·L-1 +GA 1.0 mg·L-1+ IAA0.2mg· L-1是休眠芽生长培养的理想培养基;1/2MS+BA 0.6 mg·L-1+ IA...  相似文献   

12.
采用溶胶一凝胶与热压烧结相结合的方法制备了Ca3Co4O9+6与Ca2Co2O5热电材料.x射线衍射(XRD)测试结果表明,两种材料均沿C轴有择优生长趋势.从样品的扫描电子显微照片(SEM)来看,两种材料已烧结,基本达到致密的程度.在室温至1073K温区,测试了样品的电导率和Seebeck系数.结果表明,两种材料电输运性能均随温度升高而增加,Ca3Co4O9+8。样品的电导率、Seebeck系数和功率因子明显高于Ca2Co2O5.  相似文献   

13.
在1mol/LLiPF6/EC+EMC(体积比1:1)电解液中,用恒流充放电池测试系统测试了2-甲氧基萘对磷酸铁锂电池电化学性能的影响,结果表明添加剂对电池容量特性基本没有影响.过充实验结果则表明添加5%的2.甲氧基萘表现出最优的磷酸铁锂电池的耐过充性能.  相似文献   

14.
利用水热和后热处理的方法,在不锈钢片上制备了Co_3O_4纳米线阵列,并作为阳极应用到锂离子电池上。结构和形貌表征发现,Co_3O_4纳米线为多孔结构,由大小为20~40nm的Co_3O_4颗粒构成。电化学特性测试表明,Co_3O_4纳米线阵列电极具有良好的循环稳定性和优异的倍率特性,在890mA/g的电流密度下,可逆容量为1 300mAh/g,循环150次后,库伦效率保持在99%以上。分析指出,多孔纳米结构不但使活性物质Co_3O_4能够充分与电解液接触并反应,有效地适应材料在充放电过程中的体积变化,而且减小了锂离子和电子在其中的输运距离。同时,在集流体上直接生长活性物质,它们之间具有良好的电接触,有利于电子通过界面的快速传输。  相似文献   

15.
采用传统的粉末冶金技术及真空固相烧结的方法,制备出了Co-Ni-NiFe2O4金属陶瓷惰性阳极材料,通过研究确定了制备NiFe2O4粉体及真空固相烧结Co-Ni-NiFe2O4金属陶瓷的合理工艺.实验表明:Co-Ni-NiFe2O4金属陶瓷在960℃条件下的氧化动力学曲线近似符合抛物线规律,NiFe2O4含量越多,试样的抗氧化性越强;并且在高温氧化后,氧化膜在生长过程中产生明显的择优取向.  相似文献   

16.
电沉积法制备超级电容器电极材料纳米MnO_2   总被引:2,自引:0,他引:2  
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为5.7,浓度为0.16 mol/L MnSO_4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO_2.用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na_2SO_4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析.结果表明:MnO_2的形貌及性能与沉积方法有关,所合成的MnO_2的粒径大约50 nm;用恒电流沉积法制备的样品,在0.3 mol/L的Na_2SO_4溶液中比电容最高,可达306.75 F/g.  相似文献   

17.
以草酸过氧钒为催化剂,过氧化氢为氧化剂,研究了α-蒎烯的氧化反应.考察了溶剂、温度、催化剂用量、反应时间等因素对催化性能的影响.结果表明高价态V5+与草酸形成的双过氧配合物催化剂,在催化剂质量分数为8.0%、反应温度40℃、丙酮溶剂中反应8h条件下,α-蒎烯转化率达到68.7%,主产物马鞭草烯酮的选择性为34.9%.对催化剂进行了初步的回收利用.  相似文献   

18.
以树脂D072为载体,采用动态吸附法负载Fe2+,制备了非均相芬顿反应催化剂,并通过单因素实验确定了动态吸附法制备非均相芬顿反应催化剂的最佳吸附条件。结果表明:Fe2+溶液初始浓度2 000 mg.L-1、pH=4和反应时间为40 min时D072负载Fe2+的平衡吸附量为113.6 mg.g-1(干)。D072对Fe2+的动态吸附符合Thomas模型,KTH为7.55×10-2mL.min-1.mg-1。通过吸附前后树脂D072表面SEM形貌比较发现,D072表面没有明显的裂纹。可见,动态吸附法能够避免催化剂的磨损。以D072为载体的非均相芬顿反应催化剂静态法对三种模拟染料废水脱色率达到97%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号