首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
There is limited knowledge with regard to the consumption of ethylene (C2H4) and methane (CH4) in volcanic forest soils containing low microbial carbon-to-organic carbon ratio, and to the responses of both consumptions to nitrogen and carbon additions. Temperate volcanic forest surface soils under three forest stands (e.g. Pinus sylvestris L., Cryptomeria japonica and Quercus serrata) were used to compare CH4 and C2H4 consumption by forest soils, and to study the effects of nitrogen sources and glucose on both consumptions. There was a good parallel between CH4 and C2H4 consumption by for- est soils, but mineralization reduced CH4 consumption rather than C2H4 consumption in forest soils, particularly in a Pinus forest soil. The stimulatory effect of glucose addition on both CH4 and C2H4 consumption by forest soils was increased by increasing the pre-incubation period after glucose addi- tion, and a largest stimulation occurred in the Pinus forest soil. The addition of KNO3-N at the rate of 100 μg·g1 significantly reduced the consumptions of both C2H4 and CH4 by forest soils (P≤0.05). In the presence of urea plus dicyandiamide, the consumption rates of C2H4 and CH4 by forest soils were higher than those in the KNO3-N and urea-N treated soils at the same N rate (P≤0.05), but were similar to those of the control. Hence, under experimental conditions, there was a strong inhibitory effect of NO3 rather than NH4 addition on the CH4 and C2H4 consumption in these forest soils. When amount of the added NO3-N increased up to more than 2―3 times the soil initial NO3-N concentrations, both C2H4 and CH4 consumption rates were reduced to 10%―20% of the rates in soils without nitrate addition. By comparing the three forest stands, it was shown that there was a smallest effective concentration of the added nitrate that could inhibit C2H4 and CH4 consumption in the Pinus forest soil, which indicated that C2H4 and CH4 consumption of the soil was more sensitive to NO3-N addition.  相似文献   

2.
Climate change is expected to cause the alteration of litter production in forests,which may result in substantial changes in soil CO2 efflux (FCO2) process as litter represents a major pathway of carbon from vegetation to the soils.In this study,we conducted an aboveground litter manipulation experiment to examine the influence of litter addition and exclusion on soil FCO2 in Camphor tree,Masson pine,and mixed Camphor tree and Masson pine forests in central south China.Litter input manipulation included three treatments:non-litter input (litter exclusion),double litter input (litter addition),and natural litter input (control).On average,litter exclusion significantly reduced soil FCO2 rate by approximately 39%,24% and 22% in Camphor tree forests,the Mixed forests,and Masson pine forests,respectively.On a yearly basis,double litter addition significantly increased soil CO2 by 12% in the Mixed forests (P=0.02) but not in both Camphor tree and Masson pine forests (P>0.05),when compared with their corresponding control treatments.However,litter addition increased soil FCO2 rates in the months of June-August in Camphor tree and Masson pine forests,coinciding with high soil temperature of summer conditions.Litter exclusion reduced soil FCO2 more than litter addition increased it in the study sites.Responses of soil respiration to litter input treatments varied with forest types.Litter input treatments did not alter the seasonal patterns of soil temperature and soil water content.Our results indicated that changes in aboveground litter as a result of global climate change and/or forest management have a great potential to alter soil respiration and soil carbon balance in forest ecosystems.  相似文献   

3.
Temperate forest surface soils at the varying distances from main trunks (e.g., Pinus koraiensis and Quercus mongolica) were used to study the effects of acetylene (C2H2) at low concentrations on nitrification, mineralization and microbial biomass N concentrations of the soils, and to assess the contribution of heterotrophic nitrification to nitrous oxide (N2O) emissions from soils. The use of acetylene at partial pressures within a range from 10 to 100 Pa C2H2 in headspace gas gave a significant decrease in N2O emission at soil moisture of c. 45% water-filled porosity space, and the decrease was almost the same in each soil after exposure of C2H2 at low concentrations. Heterotrophic nitrification could account for 21%―48% of total N2O emission from each soil; the contribution would increase with increasing distances from the Pinus koraiensis trunks rather than from the Quercus mongolica trunks. Under the experimental conditions, the use of C2H2 at low concentrations showed no significant influence on soil microbial biomass N, net N mineralization and microbial respiration. However, 100 Pa C2H2 in headspace gas could reduce carbon dioxide (CO2) emissions from soils. According to the rapid consumption of 10 Pa C2H2 by forest soils and convenience for laboratory incubations, 50 Pa C2H2 in headspace gas can be used to study the origin of N2O emissions from forest soils under aerobic conditions and the key associated driving mechanisms. The N2O and CO2 emissions from the soils at the same distances from the Quercus mongolica trunks were larger than those from the Pinus koraiensis trunks, and both emissions decreased as the distances from trunks increased. The stepwise regression analysis showed that 95% of the variability in soil CO2 emissions could be accounted for by the concentrations of soil total C and water soluble organic C and soil pH, and that 72% of the variability in soil N2O emissions could be accounted for by the concentrations of soil total N, exchangeable NH+4-N and microbial biomass N and 25% of the variability in heterotrophic nitrification by the soil microbial biomass N concentration. The emissions of N2O and CO2 from forest soils after exposure of C2H2 at low concentrations were positively related to the net nitrification of the soils.  相似文献   

4.
Change in temperature affects the activity of soil microorganisms.However,there is limited knowledge about temperature effects on ethylene(C2H4) and methane(CH4) production from forest soils.Topsoil samples(0―5 cm) collected from different temperate forest stands(e.g.,Pinus sylvestris L.,Cryptomeria japonica,and Quercus serrata) were used to compare C2H4 and CH4 production from soils at temperature from 5 to 35℃ under oxic and anoxic conditions.The rates of C2H4 and CH4 production from soils under oxic cond...  相似文献   

5.
The amount and biodegradability of dissolved organic carbon (DOC) in forest floors can contribute to carbon sequestration in soils and the release of CO 2-C from soil to the atmosphere.There is only limited knowledge about the biodegradation of DOC in soil extracts and leachates due to the limitations inherent in degradation experiments.Differences in the biodegradation of DOC were studied in forest soil extracts using cold and hot water and 4 mmol/L CaCl 2 solution and in soil leachates sampled under different conditions over a wide range of DOC concentrations.From these results,we developed a simple and rapid method for determining the biodegradable organic C in forest floors.The hot water extracts and CaCl 2 extracts after CH 3 Cl fumigation contained higher concentrations of biodegradable organic C than the cold water extracts and CaCl 2 extracts before fumigation,with rapid DOC degradation occurring 24-48 h after incubation with an inoculum,followed by slow DOC degradation till 120-168 h into the incubation.During a 7-d incubation with an inoculum,the variation in DOC degradation in the different soil extracts was consistent with the change in special UV absorbance at 254 nm.Relatively higher levels of biodegradable organic C were detected in soil leachates from the forest canopy than in forest gaps between April and October 2008 (P <0.05).Relatively lower concentrations of DOC and biodegradable organic C were observed in soil leachates from N-fertilized plots during the growing season compared with the control,with the exception of the plot treated with KNO 3 at a rate of 45 kg N ha 1 a 1.Around 77.4% to 96.3% of the variability in the biodegradable organic C concentrations in the forest floors could be accounted for by the initial DOC concentration and UV absorbance at 254 nm.Compared with the conventional inoculum incubation method,the method of analyzing UV absorbance at 254 nm is less time consuming and requires a much smaller sample volume.The results suggest that the regression models obtained using the initial DOC concentration and UV absorbance can provide a rapid,simple and reliable method for determining the biodegradable organic C content,especially in field studies involving relatively large numbers of samples.  相似文献   

6.
Lianas are a principal physiognomic component of tropical and subtropical forests and are typically considered to be parasites of trees. In contrast, the substantial contribution of lianas to rainforest leaf litter production (up to 40%) suggests that they play important roles in nutrient cycles and may benefit their host trees. Lianas contribute disproportionately to total forest litter production at least partially because lianas invest relatively little in support structures and proportionately much more to leaf production when compared with trees. In contrast to tree leaves, liana leaves are higher in nutrient concentrations, relatively short-lived, and decompose more rapidly. In addition, the special life form of lianas allows them to grow vertically and horizontally in the forest and relocate nutrients, mainly towards their host trees, through the production of leaf litter. Consequently, lianas may contribute substantially to the high rainforest productivity, and the roles they play in liana/tree associations and rainforest dynamics needs to be re-evaluated.  相似文献   

7.
The research outlined here includes a study of methanol production from direct methane conversion by means of thermal and plasma method. The kinetic study, derived from thermal-based approach, was carried out to investigate thoroughly the possible intermediate species likely to be presented in the process. A set of plasma experiments was undertaken by using dielectric barrier discharge (DBD), classified as non-thermal plasma, done at atmospheric pressure and room temperature. Plasma process yields more methanol than thermal process at the same methane conversion rates and methane to oxygen feed ratios. Oxidation reaction of thermal process resulted CO and CO2 as the most dominant products and the selectivity reached 19% and 68%, respectively. Moreover, more CO and less CO2 were produced in plasma process than in thermal process. The selectivity of CO and CO2 by plasma was 47% and 20%, respectively. Ethane (C2H6)was detected as the only higher hydrocarbon with a significant concentration. The concentration of ethane reached 9% of the total products in plasma process and 17% in thermal process. The maximum selectivity of methanol, the target material of this research, was 12% obtained by plasma method and less than 5% by thermal process. In some certain points, the kinetic model closely matched with the experimental results.  相似文献   

8.
Pollen evidence of early human activities in Erhai basin, Yunnan Province   总被引:3,自引:0,他引:3  
The evidence of human activities around Erhai Lake catchment was revealed by pollen records from a sediment core in the lake, northwest Yunnan Province. The chronologic sequence based on AMS ^14C data made it possible for pollen results to compare with archaeological records and historical documents. The preliminary deforestation started from the selective clearance at about 5500 ^14C a BP, marked by the loss of vertically distributed montane forest and the expansion of second pine woodland across the catchment. The deforestation resulted in the increase of surface runoff and the enhanced erosion in the catchment. The increased herbs of pasture and crop suggested the primitive agriculture and stockbreeding in study region. With the limited human activity, as well as the suitable climatic condition, second pine forest expanded quickly, resulting in the weakened soil erosion around the basin. The strong forest clearance inferred from pollen occurred since 2160 ^14C a BP, paralleling to the first dense immigration of population, when Yeyu County was first set up around west coast of Erhai Lake, documented in historic record. The development of agriculture led to the steady enhancement of soil erosion from farming land, increasing the input of fine materials and nutrients to the lake. Moreover, the serious deforestation by human activity stressed the vulnerability in ecosystem of the landscape. The time of primary anthropologic impact recorded from pollen is earlier than that of the oldest archaeological record by 1500 a (^14C year).  相似文献   

9.
Nickel was supported on varied ratios of ceria-titania mixed oxides(Ni/Ce_xTi_yO_2) to evaluate the role the support plays in photothermal carbon dioxide hydrogenation to produce methane. In a batch photothermal reactor system, Ni/CeO_2 achieved the highest conversion rate, reaching a conversion of 93% in approximately60–90 min. To decouple the influence of light and heat, the CO_2 hydrogenation was examined in an in-house designed photothermal reactor, whereby heat can be applied externally. Decoupling experiments revealed that heat from the thermalisation by light was the main driving force for the reaction. In addition, the conversion and temperature profile of the different catalysts revealed that the catalyst performance was governed by catalyst reducibility. H_2-TPR analyses showed that the Ni became more readily reducible with increasing Ce O_2 content,suggesting that the oxide plays a role in activating the Ni. The reduction temperature of the nickel catalyst(following a reduction and passivation process) was below 200 °C, which meant that the inherent heating temperature of the photothermal reactor was sufficient to initiate Ni/CexTiyO_2 catalyst activity. The exothermic methanation reaction was then able to heat the system further, ultimately reaching a temperature of 285 °C. The ancillary rise in temperature promotes further nickel reduction and methane formation, leading to a "snow-ball"effect. The findings demonstrate that, to achieve a "snow-ball" effect in a photothermal system, designing a catalyst which is easy to reduce, active for CO_2 hydrogenation, and capable of converting light to heat for its initial activation is critical.  相似文献   

10.
Public concern is often expressed at cultivars because the domestication and modern plant breeding have led to a reduction in the genetic diversity of crops and loss of genes, which could result in crops' genetic vulnerability to changes in the spectrum of pestssity of varieties in this zone is very important to the whole rice production in China. REZV, a important japonica rice production areas with more than 278 thousands ha rice which was about 71% of rice area in north China, accounted fo…  相似文献   

11.
Flavonols are plant pigments that are ubiquitous in nature. Morin and other related plant flavonols have come into recent prominence because of their usefulness as anticancer, anti-tumor, anti-AIDS, and other important therapeutic activities of significant potency and low systemic toxicity. The heat of combustion of morin (molecular formula, C15H10O7·H2O) in oxygen was measured by a rotating-bomb type combustion calorimeter, the standard molar enthalpy of combustion of morin at T = 298.15 K was determined to be Δc H m (C15H10O7·H2O, s) = −(5 937.99 ± 2.99) kJ · mol−1. The derived standard molar enthalpy of the formation of morin in solid powder state at T = 298.15 K, Δf H m (C15H10O7·H2O, s), was −(1 682.12 ± 3.58) kJ · mol−1, which provide an accurate data of the stability of morin to the pharmacy and pharmacology. Biography: HOU Hanna(1956–), female, Visiting researcher, Associate professor of Hubei University of Education, research direction: thermochemistry.  相似文献   

12.
The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters (VinOS,) toward acetylene (C2H2) molecules under gas phase (P, - 1.14 kPa), under near room temperature (T, - 350 K) conditions. Association products, VmOnC2H2^+ (m,n = 2,4; 2,6; 3,7-8; 4,9-11; 5,12-13; 6,13-16, and 7,17), are observed. The oxidation of C2H2 by (V2Os)n^+ (n = 1 -3) is experimentally identified. The reactivity of (V2O5)n^+ decreases as n increases. Density functional theory (DFT) calculations were carried out to interpret the reaction mechanisms. The DFT results indicate that a terminal oxygen atom from V2O5^+ can transfer overall barrierlessly to C2H2 at room temperature, which is in agreement with the experimental observation. Other experimental results such as the observation of V206C2H2^+ and nonobservation of V2O7,8C2H2^+ in the experiments are also well interpreted based on the DFT calculations. The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.  相似文献   

13.
The methanogenic archaea and sulfate reduction bacteria are flourishing in the sediments associated with gas venting and gas hydrate settings on the sea floor, where the anaerobic oxidation of methane (AOM) me-diated by these bacteria is the dominant path…  相似文献   

14.
It is essential for validation and improvement of a dust production model to perform field observations on dust emissions. The dust production model (DPM model) consists of two physically explicit sub-models, namely saltation model [1, 2] (eq. (1)) and sandblasting model [3] (eqs. (2) and (3)). Fh is saltation flux, E is fraction of erodible surface, C is a dimensional constant, ρa is air density, g is gravitational acceleration, U* is the wind friction velocity, Ut*(Dp) is threshold frict…  相似文献   

15.
A study on the distribution characteristics of soil organic carbon (SOC) in the alpine meadow in the Eastern Qinghai-Tibet Plateau has been carried out. The results indicate that the content of soil organic carbon (C SOC) in the topsoil of terrace meadow (TM) ((67.16 ± 1.02) g·kg−1) is more than that in the soil of upland meadow (UM) ((63.42 ± 0.65) g·kg−1), while the C SOC in upland shrubland (US) ((67.49 ± 0.83) g·kg−1) is the most abundant in the scoreh stage (September). From May to September, the C SOC in the topsoil of UM and US tends to descend, but that of TM tends to ascend. As for the distribution of the C SOC and the density of SOC in the soil in the three sample areas, the data show that the deeper the soil, the lesser the content and density of SOC. The C SOC in US is higher than that in TM and UM; the C SOC in UM is the lowest at 0–10 cm soil depth. The density of SOC in US is always the lowest among UM, TM, and US at 0–40 cm depth, which shows that the storage of carbon in UM is more than that in US in the same range; the carbon pool capacity in UM is higher than that in US in the same range. Biography: ZHANG Wei (1979–), male, Lecturer, research direction: ecology of environment.  相似文献   

16.
The optimized geometries, frequencies and interaction energy corrected with basis set superposition error (BSSE) of the multi-dihydrogen bond complexes C4H4NH…BH4. and CH≡CH…BH4. have been calculated at both the B3LYP/6-311++G** and the MP2/6-311++G** levels. The calculations were per-formed to study the nature of the N―H…H3―B and C―H…H2―B red shift multi dihydrogen bond in complex C4H4NH…BH4 and CH≡CH…BH4–. The BSSE-corrected multi-dihydrogen bond interaction en-ergy of complex I (C4H4NH…BH4.) and complexⅡ(CH≡CH…BH4.) is -76.62 and -33.79 kJ/mol (MP2/6- 311++G**), respectively. From the natural bond orbital(NBO)analysis, we detailedly discussed the orbital interactions, electron density transfers, rehybridizations and the essential of the correlative bond length changes in the two complexes. In addition, solvent effect on the geometric structures, vibration frequencies and interaction energy of the monomer and complexes was studied in detail. It is relevant to the relatively dielectric constants (ε).  相似文献   

17.
Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ^13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes, with the latter reported as weighted mean values. The two sets of δ^13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ^13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing condi- tions for C4 plants. Furthermore, δ^13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ^13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ^13C composition of both TOC and long-chain n-alkanes is effective indicators of C3/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good es- timated end members for the weighted mean δ^13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号