首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100?megahertz to 5?gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.  相似文献   

2.
J Yin  JG Ren  H Lu  Y Cao  HL Yong  YP Wu  C Liu  SK Liao  F Zhou  Y Jiang  XD Cai  P Xu  GS Pan  JJ Jia  YM Huang  H Yin  JY Wang  YA Chen  CZ Peng  JW Pan 《Nature》2012,488(7410):185-188
Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600?metres (ref. 14) and 13?kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16?kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4?±?0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8?kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.  相似文献   

3.
Experimental demonstration of a BDCZ quantum repeater node   总被引:1,自引:0,他引:1  
Yuan ZS  Chen YA  Zhao B  Chen S  Schmiedmayer J  Pan JW 《Nature》2008,454(7208):1098-1101
Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.  相似文献   

4.
Mapping photonic entanglement into and out of a quantum memory   总被引:2,自引:0,他引:2  
Choi KS  Deng H  Laurat J  Kimble HJ 《Nature》2008,452(7183):67-71
Developments in quantum information science rely critically on entanglement-a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically. In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon-counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols. But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single-photon sources, our protocol will allow 'on-demand' entanglement of atomic ensembles, a powerful resource for quantum information science.  相似文献   

5.
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4?T), low-temperature (2.9?K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.  相似文献   

6.
Tanzilli S  Tittel W  Halder M  Alibart O  Baldi P  Gisin N  Zbinden H 《Nature》2005,437(7055):116-120
Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.  相似文献   

7.
Experimental entanglement purification of arbitrary unknown states   总被引:6,自引:0,他引:6  
Pan JW  Gasparoni S  Ursin R  Weihs G  Zeilinger A 《Nature》2003,423(6938):417-422
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.  相似文献   

8.
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.  相似文献   

9.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.  相似文献   

10.
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.  相似文献   

11.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

12.
Choi KS  Goban A  Papp SB  van Enk SJ  Kimble HJ 《Nature》2010,468(7322):412-416
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.  相似文献   

13.
Edamatsu K  Oohata G  Shimizu R  Itoh T 《Nature》2004,431(7005):167-170
Entanglement is one of the key features of quantum information and communications technology. The method that has been used most frequently to generate highly entangled pairs of photons is parametric down-conversion. Short-wavelength entangled photons are desirable for generating further entanglement between three or four photons, but it is difficult to use parametric down-conversion to generate suitably energetic entangled photon pairs. One method that is expected to be applicable for the generation of such photons is resonant hyper-parametric scattering (RHPS): a pair of entangled photons is generated in a semiconductor via an electronically resonant third-order nonlinear optical process. Semiconductor-based sources of entangled photons would also be advantageous for practical quantum technologies, but attempts to generate entangled photons in semiconductors have not yet been successful. Here we report experimental evidence for the generation of ultraviolet entangled photon pairs by means of biexciton resonant RHPS in a single crystal of the semiconductor CuCl. We anticipate that our results will open the way to the generation of entangled photons by current injection, analogous to current-driven single photon sources.  相似文献   

14.
Quantum nature of a strongly coupled single quantum dot-cavity system   总被引:1,自引:0,他引:1  
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.  相似文献   

15.
Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature--light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58 +/- 0.02 for n = 20 and 0.60 +/- 0.02 for n = 5--higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.  相似文献   

16.
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.  相似文献   

17.
Blinov BB  Moehring DL  Duan L  Monroe C 《Nature》2004,428(6979):153-157
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.  相似文献   

18.
An elementary quantum network operation involves storing a qubit state in an atomic quantum memory node, and then retrieving and transporting the information through a single photon excitation to a remote quantum memory node for further storage or analysis. Implementations of quantum network operations are thus conditioned on the ability to realize matter-to-light and/or light-to-matter quantum state mappings. Here we report the generation, transmission, storage and retrieval of single quanta using two remote atomic ensembles. A single photon is generated from a cold atomic ensemble at one site , and is directed to another site through 100 metres of optical fibre. The photon is then converted into a single collective atomic excitation using a dark-state polariton approach. After a programmable storage time, the atomic excitation is converted back into a single photon. This is demonstrated experimentally, for a storage time of 0.5 microseconds, by measurement of an anti-correlation parameter. Storage times exceeding ten microseconds are observed by intensity cross-correlation measurements. This storage period is two orders of magnitude longer than the time required to achieve conversion between photonic and atomic quanta. The controlled transfer of single quanta between remote quantum memories constitutes an important step towards distributed quantum networks.  相似文献   

19.
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.  相似文献   

20.
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830?±?80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号