首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 62 毫秒

1.  双层涡轮桨搅拌槽内混合过程的数值模拟  被引次数:7
   苗一  潘家祯  张国娟  闵健  高正明《华东理工大学学报(自然科学版)》,2006年第32卷第3期
   采用FLUENT软件对双层六直叶涡轮桨搅拌槽内的混合过程进行了数值模拟,选用RNG标准κ-ε模型及多重参考系法(MRF),通过改变网格策略,增加网格数量,并降低浓度收敛残差的方法,将速度场与浓度场方程分开求解,预测了不同的加料点、监测点位置及操作条件对混合时间的影响规律。模拟结果表明:搅拌功率的模拟值与实验值吻合良好,但由于模型基于各向同性的假设,且双层六直叶涡轮桨两桨之间子域的存在,混合时间的模拟结果与实验值有较大的误差。    

2.  顶入式与侧入式搅拌槽内混合特性的比较  
   方键  凌祥  桑芝富《南京工业大学学报(自然科学版)》,2012年第34卷第1期
   应用计算流体动力学方法(CFD)对顶入式与侧入式搅拌槽内的流型特征、混合过程进行了数值模拟。计算采用标准k-ε湍流模型、多重参考系法和滑移网格法研究了2种形式搅拌槽的混合效率,分析了不同槽高径比H/T及桨型对侧入式搅拌槽混合性能的影响,并使用文献数据与碘一硫代硫酸钠褪色法对模拟进行了验证。结果表明:四斜叶开启涡轮桨(PBTD45)运行下顶入式与侧入式搅拌槽内主体循环均是轴向循环流;在H/T=1的搅拌槽中相同功耗情况下,顶入式搅拌的混合效率比侧入式搅拌的高,混合时间减少了约28.2%;侧入式搅拌在较低H/T比的搅拌槽内的混合效率较高,当H/T=0.6左右时侧入式搅拌的混合效率与顶入式(H/T=1)接近。PBTD6030桨与FE-4桨较适合侧入式搅拌槽中的混合操作。    

3.  运用CFD研究钟摆式搅拌的混合效率  
   杨锋苓  周慎杰  张翠勋《兰州大学学报(自然科学版)》,2008年第Z1期
   设计了一种钟摆式搅拌槽,对槽内流场和混合过程进行了数值模拟,分析了槽内流体的流动特性及加料方式对混合效果的影响。并对混合效率进行了评定.结果表明:钟摆式搅拌槽内桨叶上方区域的混合比桨叶下方要好;考察加料位置的影响时,自由液面加料的混合效果优于底部加料;整体来讲,自由液面加料时钟摆式搅拌槽的混合效率比较高,与三窄叶翼形搅拌桨相接近,槽底部加料时的混合效率要低一些,与六直叶圆盘涡轮桨相当.    

4.  涡轮桨搅拌槽内混合过程的数值模拟  被引次数:7
   张国娟  闵健  高正明  牛国瑞  施力田《北京化工大学学报(自然科学版)》,2004年第31卷第6期
   文中采用FLUENT软件对六直叶涡轮桨搅拌槽内的混合过程进行了数值模拟,选用多重参考系法(MRF)及标准kε模型,将速度场与浓度场方程分开进行求解,所得的混合时间的模拟结果与实验值相吻合。同时用计算机流体力学(CFD)方法研究了不同的加料点、监测点位置及操作条件对混合时间的影响规律,模拟结果表明:混合过程主要由搅拌槽内的流体流动所控制,混合时间与加料点及监测点位置密切相关。研究结果对于工业搅拌反应器的优化具有一定的参考意义。    

5.  搅拌对箱式混合澄清槽流动性能的影响  
   赵秋月  张廷安  刘燕  王淑禅《东北大学学报(自然科学版)》,2012年第33卷第4期
   针对当前混合澄清萃取槽存在的问题,提出了改进的新型混合澄清萃取槽.采用专业的流体力学数值模拟软件ANSYS/FLUENT,对新型萃取槽内流场情况进行了模拟研究.结果表明,在油水两相流速分别为0.22和0.11 m/s,混合室搅拌转速为800 r/min,澄清室搅拌转速为20 r/min时,与传统萃取槽相比,在搅拌作用下,新型萃取槽澄清室内桨叶附近的混合带更窄,两相分离效果更佳;混合室内桨叶上下方流场呈涡旋流,与六直叶涡轮桨搅拌特点相符.    

6.  融合升力线理论和雷诺时均模拟在螺旋桨设计和水动力性能预报中的应用  被引次数:1
   杨琼方  王永生  黄斌  刘登成《上海交通大学学报》,2011年第4期
   同时采用Lerbs非最优螺旋桨理论和Epps最佳环量分布理论,将螺旋桨升力线方法由初始设计应用扩展到敝水性能预报,对DTMB 4119、4381、4382和4497这4个螺旋桨的敞水性能曲线进行了预报分析.针对升力线方法在中度负载区间的适用限制和无法在黏性流场中考虑桨叶空化性能的缺陷,进一步将Epps方法与雷诺时均(RANS)模拟相结合,可明显提高低、高负载区间的敞水性能预报精度.Epps方法预报精度要高于Lerbs方法,能够满足工程初始分析需求.随着远离设计工况点(低、高进速系数)其预报误差变大,桨叶侧斜程度和纵倾存在也会增大预报误差.RANS模拟时桨叶切面型值由升力线方法提供,桨叶几何和六面体网格划分均采用程式化操作实现.在分析网格因素影响后,所得推力和力矩系数以及压力系数分布均匀与实验值吻合较好.在RANS模拟中加入混合物均相流空化模型后,可定量得出桨叶梢涡涡束在一定距离内的螺旋轨迹.结合桨叶最大负载截面的空化斗性能和梢涡涡束最小压力点幅值,可相对判定桨叶空化性能.构建了基于水动力性能评价的螺旋桨参数化设计和非空化与空化性能预报的数值平台.    

7.  三层桨搅拌槽内聚醚多元醇流场的LDV测量与数值模拟  
   程群群  钟秦《安庆师范学院学报(自然科学版)》,2017年第4期
   采用流体力学软件(FLUENT),建立了两种三层桨搅拌槽的数值模拟模型,模拟聚醚多元醇(PPG)的流动特性,并与激光多普勒测速技术(LDV)测量数据进行比较.结果表明,选用多重参考系法(MRF)和Laminar模型计算结果与LDV测量值基本吻合.上、中层为四宽叶翼型上提桨(WHu),底层为六半椭圆管涡轮桨(6-HEDT),槽内"死区"少、高速率区分布多、搅拌功率损耗小、径向与轴向速率大,适用于PPG搅拌系统内.两种组合桨的周向速率均偏大,因而降低PPG的周向速率或提高轴向和径向速率,是改善PPG搅拌混合的关键.    

8.  行星式搅拌釜混合性能的数值模拟  
   王晓瑾  彭炯  杨伶  陈晋南《北京理工大学学报》,2012年第32卷第6期
   使用Fluent软件数值模拟行星式搅拌釜高黏熔体中固液混合过程,研究搅拌桨自转速度和安装高度对搅拌釜混合性能的影响.采用欧拉模型、动网格技术和用户自定义函数,在搅拌桨不同自转速度和安装高度下,数值计算了搅拌釜内固液两相流的流场、混合时间和搅拌桨的扭矩,用搅拌功率和单位体积混合能评价搅拌釜的混合效率.计算结果表明,搅拌桨自转速度从20r/mim提高到60r/min,物料混合时间缩短,搅拌功率和单位体积混合能增大,混合效率降低;搅拌桨安装高度从20mm增加到60mm,物料混合时间缩短,搅拌功率变化不大,单位体积混合能减小,混合效率提高.    

9.  涡轮桨搅拌槽内流动的旋流修正数值模拟  
   张艳红  杨强  刘虹  汪华林《华东理工大学学报(自然科学版)》,2009年第35卷第2期
   采用标准κ-ε模型和旋流修正的κ-ε模型分别对带挡板的Rushton涡轮桨搅拌槽进行了数值模拟计算。控制方程采用有限体积法在柱坐标系下离散,压力速度耦合方程采用SIMPLE算法求解。搅拌桨和挡板之间的相互作用采用改进的内外迭代法处理。计算结果与文献实验数据的结果比较表明:在排出流区采用旋流修正的结果有很大改善,而在循环区效果却不是很好。    

10.  双层半圆管盘式涡轮桨搅拌槽气液分散特性的数值模拟  
   张雪雯  李志鹏  高正明《北京化工大学学报(自然科学版)》,2011年第38卷第2期
   采用基于气泡聚并和破碎机理的群体平衡(PBM-MUSIG)模型,对双层半圆管盘式涡轮桨搅拌槽内的气液分散特性进行了数值模拟;考察了不同通气量和操作转速下气液搅拌槽内流体流动,局部气含率和气泡尺寸的分布规律。模拟结果表明:通气工况下搅拌槽内的液相流场具有双循环流动形式;采用PBM-MUSIG模型预测的局部气含率分布与文献实验数据吻合较好;搅拌槽内气泡尺寸随转速增加而减小,随气量增加而增大;桨叶排出流区域内气泡尺寸较小,近壁区和循环区内气泡尺寸较大。    

11.  双螺带-螺杆搅拌桨在不同流体中的搅拌流场特性  被引次数:1
   张敏革  张吕鸿  姜斌  李鑫钢《天津大学学报(自然科学与工程技术版)》,2009年第42卷第10期
   采用计算流体力学方法对双螺带-螺杆搅拌桨在层流域内的搅拌流场进行了数值模拟,考察流体为高黏牛顿流体和假塑性非牛顿流体数值模拟计算得到的功率值与实验测量值吻合较好;双螺带-螺杆搅拌桨的功率常数为162.7,Metzner常数为19.0;搅拌雷诺数以及流体的流变指数对非牛顿流体搅拌流场的无因次速度、循环量数均有不同程度的影响;与双螺带搅拌桨相比,双螺带-螺杆搅拌桨能在一定程度上提高全槽平均剪切速率和平均速度研究进一步认识了双螺带-螺杆搅拌桨的混合性能特点,为高黏流体搅拌桨的设计、应用以及开发新型搅拌桨提供了指导和参考    

12.  组合桨层间距对搅拌槽内流动特性的影响  被引次数:2
   童鸣  赵静  李志鹏  高正明《北京化工大学学报(自然科学版)》,2010年第37卷第6期
   采用粒子图像测速技术(PIV)对三层组合桨(HEDT+2WHU)搅拌槽(槽径0.476m)内的流动特性进行了研究,在搅拌转速、顶桨浸没深度和顶层桨高度不变的情况下,得到了中层桨位置的变化对搅拌槽内的流型、相位解析速度场和湍流动能的影响规律.结果表明,中层桨位置的改变对搅拌槽上部区域流体的流动特性影响显著,而对搅拌槽下部区域流体的流动特性产生影响较小;随中层桨位置降低,槽上部液面处反向回流区逐步缩小直至消失,中、顶层桨合并轴向流断裂,底桨上涡环作用范围不断压缩;对于相位解析速度场,较之中层桨尾涡几乎没有变化,顶桨尾涡的发展由极其微弱逐渐清晰,底桨尾涡则提前了10°相位出现;对于湍流动能分布,中、上层桨逐渐趋向于类似两层桨单独作用,底、中层桨间整体湍流动能增大.    

13.  组合桨搅拌槽内混合过程的实验研究及大涡模拟  
   赵静  蔡子琦  高正明《北京化工大学学报(自然科学版)》,2011年第38卷第6期
   采用实验研究和数值模拟相结合的方法对直径为0.19 m的三层组合桨(HEDT+2WHU)搅拌反应器(直径0.48 m)内的混合过程进行了研究。实验采用褪色法和光功率计相结合的方式,考察了7个不同监测点对混合效果的响应情况,并利用高速相机记录了示踪剂在反应器内的浓度分布随时间的变化。数值模拟采用LES模型对反应器内的混合特性进行研究,并与标准k-ε模型的模拟结果和实验数据进行对比。结果表明示踪剂从液面加入后,依次到达中层桨上方、顶层桨和中层桨之间以及底层桨下方的3个循环子域,在每个子域中,示踪剂先进行轴向扩散再沿径向和切向扩散;中层桨位置处测得的混合时间最短,并分别向液面和槽底依次增大;LES预测的示踪剂浓度分布与实验结果吻合,而标准k-ε模型预测的示踪剂浓度分布不准确;数值模型预测的混合时间在轴向的分布与实验吻合,数值偏大,标准k-ε模型的预测偏差为35%,LES预测的偏差降低到14%。    

14.  搅拌槽示踪剂浓度扩散模拟与实验研究  
   李欣欣  向民奇  黄振峰  邓远锋  成刚  潘瑞《广西大学学报(自然科学版)》,2018年第3期
   针对单层双桨叶圆形搅拌槽不同参数(桨叶角度、桨叶离底高度、桨叶宽度、桨叶直径,水平加料点),运用CFD软件Fluent对搅拌槽内流场进行数值模拟,计算并分析了各个参数对混合时间、搅拌功率和单位体积混合能等3个指标的影响;进行了不同桨叶角度和桨叶离底高度条件下的实验研究,运用电导率测试法测量搅拌溶液浓度的变化曲线,并与数值模拟结果进行了对比。研究结果表明,单位体积混合能指标能综合混合时间与搅拌功率,可作为参数优化的指标;在单因素条件下,桨叶角度优化为20°、桨叶离底高度为500 mm、桨叶宽度为80 mm、桨叶直径为300 mm,水平加料点为100 mm;实验研究中示踪剂Na Cl溶液的浓度变化曲线与数值模拟的溶液浓度变化曲线的相关系数在0.77~0.86,故可通过数值模拟的方法在一定程度上进行搅拌槽参数优化设计。    

15.  双搅拌高效澄清萃取槽混合室均混时间的数值模拟  
   吕 超  张子木  赵秋月  刘 燕《东北大学学报(自然科学版)》,2014年第6期
   利用CFD软件FLUENT 12.0,采用Realizable k-ε湍流模型、Eulerian多相流模型及Morsi-Alexander相间曳力系数模型,使用滑移网格法处理桨叶的旋转区域,对新型萃取槽混合室内的液-液体系的均混时间以及搅拌功率进行数值模拟.结果表明:随着搅拌转速的增大,搅拌桨消耗的功率增加,水油两相的均混时间减小.搅拌桨转速达到400 r/min后,增大转速则搅拌功率继续增大,但对液-液两相均匀混合时间的影响不大.    

16.  基于分离涡模拟方法的导管桨近尾流场及尾涡特性分析  
   龚杰  郭春雨  吴铁成  宋科委  林健峰《上海交通大学学报》,2018年第6期
   基于分离涡模拟(DES)方法对设计工况下导管桨的近尾流场及尾涡特性进行数值模拟.数值计算中选用SpalartAllmaras湍流模型封闭N-S方程,采用滑移网格技术及混合网格划分方法完成导管桨敞水性能数值计算.通过分析导管桨瞬态尾流场及尾涡空间结构发现:近尾流场中螺旋桨半径区域瞬态诱导速度大,尾流中分布着连续漩涡结构,尾流加速作用明显.导管桨尾涡主要由导管剪切层涡、叶片涡系及毂涡组成,叶片涡系中包含叶梢涡、叶根涡、毂涡及相邻梢涡带之间诱导产生的S形二次涡;导管桨尾涡结构中多重涡系之间产生复杂干扰,尾涡形态出现融合、扭曲、分解并逐渐扩散.    

17.  涡轮桨变速搅拌槽内湍流混合的实验研究  
   杨锋苓  曹明建《燕山大学学报》,2010年第34卷第4期
   以NaCl颗粒在水中的溶解为例,对湍流状态下周期性变速旋转的(改变桨叶转向或速度大小,分别称为周期性换向搅拌和周期性依时搅拌)Rushton桨搅拌槽内的混合特性进行了实验研究,并与稳速搅拌进行了对比。实验过程中测量了不同搅拌模式、不同桨叶安装高度时颗粒的溶解时间,结果证明,搅拌槽底部的流型对NaCl的溶解有重要影响;桨叶安装高度对溶解速度的影响不大,周期性依时搅拌时的溶解时间比稳速搅拌时稍短,而周期性换向搅拌则能明显加快溶解速度,提高混合效率。    

18.  混合LES-RANS模型在结晶器钢液流场模拟中的应用  
   茅晓慧  李京社  张江山  唐海燕  吉传波《北京科技大学学报》,2014年第5期
   采用了一种新的混合LES-RANS(大涡模拟-雷诺平均模型)湍流模型模拟结晶器中钢液的流场.模型通过修正湍流黏度系数对水口和结晶器内湍流进行过滤,对大尺度的湍流直接采用Navier-Stokes方程求解计算,对小尺度的脉动采用标准k-ε模型进行计算.该模型能避免RANS的过分耗散并且能捕捉到更多的瞬态湍流信息.模型通过对连铸结晶器内液态金属GaInSn模型速度进行测量验证,速度测量方法为超声波多普勒测速仪(UDV)测速法.新模型与实验测量值吻合程度明显好于RANS模拟的结果,能更准确地预测结晶器和水口内的湍流行为.结晶器内瞬态流动特征表明,水口两侧流体呈周期性的偏流,周期约为5s.    

19.  卧式搅拌槽内流体混合的实验与模拟研究  
   王嘉骏  顾雪萍  冯连芳  曹松峰  胡国华《中国科技论文在线》,2008年第12期
   对卧式单轴格子桨搅拌槽中的流体混合过程进行了实验和模拟研究;采用碘和硫代硫酸钠褪色法实验考察了不同搅拌转速时的混合特性,由数码相机记录了混合过程的快照;采用计算流体力学方法对于混合时间进行两步法模拟,先计算稳态流场,然后在此稳态流场的基础上采用加入浓度标量的方法计算示踪剂扩散情况。混合过程的模拟结果与实验数据吻合良好。    

20.  涡轮桨搅拌槽内流场的数字PIV测量  被引次数:13
   樊建华  饶麒  王运东  费维扬《清华大学学报(自然科学版)》,2003年第43卷第12期
   为研究机械搅拌槽内的流场特性,用数字粒子图像测速仪对桨叶直径与搅拌槽直径比约为0.5的涡轮桨搅拌槽内流场进行了测量。实验发现测量值随时间的随机脉动非常剧烈,为准确获取时均速度场,确立了多采样点平均的实验方法并进而找出了最佳采样点数。在获取的时均速度场的基础上计算了流量准数、涡量和湍动能的分布,考察了转速和测量面位置对流场的影响。结果表明:湍动能分布不均匀,在叶轮区较高,而在主体区较小;由于自由液面的作用,湍动能在高度方向上呈非对称性分布,并且这种非对称性随转速的变化而变化。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号