首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用超塑性预处理细化晶粒原理 ,在低碳钢中加入不同体积分数的第二相粒子ZrC和ZrO2 ,研究了ZrC和ZrO2 粒子体积分数及轧后不同冷却方式对低碳钢组织和力学性能的影响。研究结果表明 ,轧制变形量为 84 %时 ,加入 0 .8%的ZrC粒子 ,采用轧后水冷方式可获得超细组织 ,晶粒尺寸可达到 9.8μm ;加入 0 .2 %的ZrO2 粒子时 ,晶粒尺寸可达 7.8μm。轧后水冷比轧后空冷方式能获得更为细小的晶粒  相似文献   

2.
用超塑性预处理原理细化低碳钢晶粒的研究   总被引:5,自引:0,他引:5  
利用超塑性预处理细化晶粒原理。在低碳钢中加入不同体积分数的第二相粒子ZrC和ZrO2,研究了ZrC和ZrO2粒子体积分数及轧后不同冷却方式对低碳钢组织和力学性能的影响。研究结果表明;轧制变形量为84%时,加入0.8%的ZrC粒子,采用轧后水冷方式可获得超细组织,晶粒尺寸可达到9.8μm;加入0.2%的ZrO2粒子时,晶粒尺寸可达7.8μm,轧后水冷比轧后空冷方式能获得更为细小的晶粒。  相似文献   

3.
在低碳低合金钢熔炼过程中加入平均粒径为0.5 μm,体积分数为0.8%的ZrC粒子,研究了不同轧制变形量条件下的晶粒细化行为及力学性能.轧制变形过程中在ZrC粒子周围形成高位错密度和高晶格畸变区,成为形变核心和再结晶核心,促进了高温奥氏体非自发再结晶细化奥氏体晶粒;由于奥氏体晶粒尺寸细化,奥氏体晶界面积增大,随后进行的铁素体相变的铁素体形核位置增多,从而大大细化了铁素体晶粒尺寸;轧制变形量与ZrC粒子体积分数存在一定的最佳配合才能对晶粒细化有作用.本实验中轧制变形量为62%,ZrC粒子体积分数0.8%以及轧后水冷条件下,铁素体晶粒尺寸细化到9.8 μm,屈服强度和抗拉强度明显提高,分别达到386.4 MPa和522.1 MPa;同时冲击吸收功(AKV=118.5 J)不降低且延伸率(δ5=34.5%)有所提高,说明添加ZrC粒子可促进晶粒细化.  相似文献   

4.
超细第二相粒子强化低碳微合金钢铁材料的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机进行单向压缩热模拟试验,研究了试验钢在形变诱导铁素体相变过程中ZrC粒子对铁素体晶粒细化的促进作用,结果表明:粒径小于1.0μm的ZrC粒子作为形变和再结晶核心可以加速铁素体形核,从而细化铁素体晶粒,为提高α-Fe形核率,试验钢获得超细组织的ZrC粒子临界体积分数是0.6%,当ZrC粒子的加入量为0.5%、轧制变形量为0.6时,轧后水冷可获得3~4μm的超细晶粒组织,抗拉强度约提高70%,材料综合性能显著提高.  相似文献   

5.
以粒径为0.2~1.0μm的ZrC颗粒为增强相,采用压入铸造法制备含ZrC粒子的试验钢,通过热模拟实验、性能测试、透射电镜等方法,研究ZrC粒子对钢的组织细化和力学性能的影响.研究结果表明:ZrC粒子在基体20Mn2钢中分布均匀,能细化基体晶粒;在轧制过程中,ZrC粒子能加速形变诱导铁素体相变的进程,导致组织超细化;当ZrC粒子的平均粒径为0.4μm、加入量(体积分数)为0.5%时,实验室轧后水冷可获得晶粒粒径为3.9μm的9mm中板,材料的屈服强度提高58%,综合性能显著提高,这主要归因于微米ZrC增强相良好的细晶强化及第二相强化作用.  相似文献   

6.
外加陶瓷颗粒细化低碳微合金钢晶粒   总被引:1,自引:0,他引:1  
真空条件下,在低碳微合金钢中加入微米级ZrC陶瓷颗粒,使其成为钢在热轧时奥氏体的形变核心及其形变诱导铁索体的再结晶核心以细化晶粒.研究了添加不同体积分数ZrC粒子对低碳微合金钢组织和力学性能的影响.结果表明,通过本实验研究出的颗粒外加方式可使ZrC颗粒有效分散于钢中,对钢的组织产生明显的细化作用,可使钢的晶粒细化到5.5μm,钢的强度得到较大幅度的提高,钢的显微组织为铁素体.当加入ZtC颗粒的体积分数为1.1%时,可获得最佳综合力学性能.  相似文献   

7.
采用X射线、光学显微镜及扫描电镜等研究质量分数为0~0.3%的钇对2519铝合金铸态组织的影响.研究结果表明:添加0.1%的钇后2519铝合金的铸态组织明显细化,铸态晶粒尺寸由100μm减少到70μm;但当钇含量超过0.1%时,合金的铸态组织随着钇含量的增加又逐渐粗化;当钇含量为0.3%时,合金铸态晶粒尺寸达200μm左右;钇加入2519铝合金中主要形成Al6Cu6Y稀土化合物并沿晶界分布;钇改变了合金铸态中第二相的形貌及大小,加入适量的钇(0.1%)对2519铝合金铸态中的第二相具有球化和细化作用.  相似文献   

8.
使用实验轧机旁冷却装置配合轧机进行轧制实验,研究轧制道次间不同冷却工艺对特厚钢板组织和性能的影响规律.研究结果表明:采用道次间冷却工艺可以在全厚度方向获得组织细化及强韧性提高效果,采用强冷道次间冷却实验钢1/4处晶粒尺寸可细化至10μm,强度为376MPa,-40℃冲击功为169J;心部晶粒尺寸可细化至15μm,强度为360MPa,-40℃冲击功为123J.本工艺可形成470μm厚表层细晶层,晶粒尺寸可细化至5μm;粗轧道次间插入冷却工艺轧制钢板强度和冲击韧性优于中间坯冷却工艺;随冷却强度增加,钢板内部组织明显细化且强度大幅提高.  相似文献   

9.
用CaCO3作细化剂研究了对AZ31镁合金凝固组织的影响.结果表明:在AZ31中添加质量分数为0.5%的CaCO3,在760℃保温10 min后细化效果最佳,α-Mg晶粒的尺寸由基体合金的570μm降至209μm,降幅约63.3%.通过能谱分析、结合能和自由能的计算证实,细化机理是CaCO3反应后生成Al4C3,其中部分Al4C3质点作为异质核心,使晶粒细化,其余的Al4C3质点钉扎晶界也阻碍了晶粒长大.Al元素随固/液界面前沿被快速推至晶界,生成沿晶界生长的β-Mg17Al12相,起到进一步固定晶界的作用.合金元素的分布均有改变.  相似文献   

10.
采用实验室25 kg高频真空感应炉熔炼M2钢,并用水冷铜模和砂模均浇铸为横截面100 mm×50 mm的M2钢铸锭,研究冷却速度对M2钢二次枝晶间距、渗透率、碳化物和晶粒尺寸及分布的影响.研究结果表明:M2钢凝固过程中,快的冷却速度能有效减小二次枝晶间距、渗透率、晶粒和网状碳化物的尺寸,同时可以改善晶粒和网状碳化物的分布和均匀性;砂模和水冷铜模M2钢铸锭的平均二次枝晶间距分别为42.5μm和21.6μm,平均冷却速度为1.06 K·s-1和12.50 K·s-1,平均渗透率分别为0.13μm2和0.035μm2.快的冷却速度能有效减轻中心碳偏析程度,砂模和水冷铜模模铸的M2钢铸锭中心碳化物面积分数分别为0.46和0.30,且其较各自的平均值分别增大38.7%和2.2%;水冷铜模铸锭平均晶粒尺寸(43.1μm)较砂模铸锭的平均晶粒尺寸(72.6μm)减小约40.7%,铸锭中心晶粒尺寸减小43.2%,且水冷铜模铸锭的晶粒尺寸较砂模铸锭均匀.文中获得了M2钢凝固过程中晶粒尺寸与冷却速度的关系式.  相似文献   

11.
运用热动力学理论和Oswald熟化理论研究了不同氮含量汽车大梁钢中第二相粒子的析出和熟化行为.研究发现钢中N含量的增加会促进V(C,N)在奥氏体中析出从而细化铁素体晶粒,当氮的质量分数增至4.2×10 4时铁素体晶粒尺寸能细化至4.7μm.形核率–温度曲线和析出–温度–时间曲线表明氮含量的增加可以扩大奥氏体区中最大形核率的温度范围,氮的质量分数由5.5×10 5增至4.2×10 4时其最快析出的鼻点温度由840℃上升至968℃.透射电镜观察显示氮含量的增加明显降低析出V(C,N)粒子的尺寸.VN在奥氏体中的Oswald熟化速率计算表明熟化速率随温度的降低不断减少,同时增加N含量还可以有效降低析出粒子的熟化速率,从而抑制沉淀析出的第二相粒子的熟化长大过程.  相似文献   

12.
在560~620℃下对喷射沉积态7050铝合金材料进行了半固态轧制实验,采用扫描电镜和能谱仪、X射线衍射仪考察了材料晶粒尺寸和第二相粒子的分布随重熔温度的变化规律,以及轧制过程中重熔温度和变形量对带材显微组织的影响,分析了半固态轧制的可行性.结果表明:喷射沉积态7050铝合金的晶粒长大激活能为70.5kJ/mol;当重熔温度由560℃增加到620℃时,材料的晶粒粗化速率由1.16μm3/s增加到76.06μm3/s,液相分数由3.7%增加到64.1%;第二相粒子的分布和数量对晶粒的粗化有抑制作用;喷射沉积态7050铝合金最佳的半固态轧制重熔温度为590℃;喷射沉积态材料在半固态轧制成形时,形变的主要作用是致密化材料、破碎晶粒、促使动态再结晶的发生.  相似文献   

13.
在连续高能超声作用下,制备出一种新型的Al-5Ti-1B中间合金,研究了该中间合金的微观组织、形核相TiB2粒子尺寸分布以及它对工业纯铝的晶粒细化效果.结果表明,与常规制备方法相比,在4 min连续高能超声振动作用下,可使Al熔体对混合氟盐的吸收率达到100%,大大缩短了制备反应时间.Al-5Ti-1B中间合金中,TiAl3相呈现10~20μm小团块状;TiB2粒子为规则多边状,并有清晰的外形轮廓,呈松散聚集团状分布;TiB2粒子的平均尺寸以及尺寸跨度大大降低,分别为646.9 nm、1.2μm.该中间合金的优良组织特性显著提高了其晶粒细化性能,用此中间合金可将工业纯铝的铸态晶粒尺寸细化至45μm.  相似文献   

14.
通过紧凑拉伸试验研究了碳的质量分数约为0.5%的C50车轮钢解理断裂韧性KIC(即条件断裂韧性KQ)与晶粒尺寸的关系.结果表明,晶粒尺寸对试样的断裂韧性有明显的影响,但决定车轮钢解理断裂韧性的是组织中最大的晶粒尺寸,而不是平均晶粒尺寸,最大晶粒尺寸越大,断裂韧性越低.对于C50车轮钢,当前5%的最大晶粒平均尺寸为30~73μm时,车轮钢的条件断裂韧性KQ与晶粒平均尺寸的对数呈线性关系.  相似文献   

15.
用第二相粒子细化HSLA钢晶粒   总被引:3,自引:0,他引:3  
文章总结了用第二相粒子细化晶粒的理论。比较了各种第二相粒子细化晶粒的效果,提出使用SiO2粒子细化HSLA钢晶粒的可能性。理论分析表明,在凝固过程中有可能获得较高的SiO2粒子体积分数。此外,还进行了实验室研究,得到了较小尺寸的SiO2粒子。  相似文献   

16.
以一种新型高Nb-IF钢和传统Nb+Ti-IF钢为研究对象,分别进行相同的冷轧及退火处理,对比研究了两种实验钢的微观组织和织构演变特征.结果表明:与传统Nb+Ti-IF钢相比,该新型高Nb-IF钢由于添加了较高含量的C和过量的固定元素Nb从而提高了再结晶温度;875℃退火时,平均晶粒直径由传统Nb+Ti-IF钢的15.4μm细化到12.1μm,大量尺寸在10~30nm之间的细小Nb(C,N)复合析出粒子是其晶粒细化的原因;有利r值的ND∥{111}纤维织构峰值更加尖锐且发展速度较快.EBSD分析结果表明,该新型高Nb-IF钢组织均匀性良好,相邻晶粒取向夹角≤15°的小角晶界及低ΣCSL晶界含量...  相似文献   

17.
利用正交实验方法研究了强脉冲电流作用下轧制态AZ31的静态再结晶及其微观组织与力学性能。结果表明:轧制变形量和脉冲宽度对再结晶分数的影响较大,随着二者的增大,再结晶分数明显提高;轧制变形量对降低平均晶粒尺寸有明显效果,而脉冲宽度和脉冲时间可促进晶粒尺寸的均匀化;轧制变形量和脉冲宽度是影响热效应的主要因素。实验得到最优组合条件下微观组织的再结晶分数为97.9%,平均晶粒尺寸为6.74μm;当轧制变形量为30%、脉冲宽度为70μs、脉冲时间为10min时,材料的抗拉强度和延伸率分别达到341 MPa和11.6%.  相似文献   

18.
通过对Mg-6Al-1Sn合金(AT61)进行挤压以及后续的单道次大应变量轧制变形,获得了高强塑性的新型变形镁合金板材.组织分析表明AT61合金中主要析出相为Mg17Al_(12)相和Mg2Sn相,挤压态合金经轧制之后晶粒都被细化,合金强度显著提高.随着应变量的增加,晶粒尺寸先显著降低后有所上升,屈服强度变化规律与晶粒尺寸变化规律一致.经过250℃下的单道次约56%大应变量轧制变形后晶粒尺寸细化最明显(约为4.18μm),合金的屈服强度约为196 MPa,抗拉强度约为294 MPa,延伸率约为26.7%,表现出最优的综合力学性能.  相似文献   

19.
为揭示Mg,Zr及Mg-Zr在低合金钢中的微合金化效果,以FH40船板钢为研究对象,利用真空感应炉、450型双棍可逆轧机制备Mg,Zr及Mg-Zr处理工艺实验钢,采用SEM和OM等手段观察实验钢铸态和轧态组织,并对其力学性能进行系统测定。研究结果表明:Mg和Zr加入FH40船板钢中均减少铸态组织中珠光体体积分数,诱导针状铁素体组织的形核。同时Mg和Zr加入也细化钢轧态组织,且单独Mg加入的效果优于单独Zr和Mg-Zr复合加入的效果,当添加质量分数为0.072%Mg时,组织中铁素体晶粒度由基准钢的9.69μm细化至4.31μm。单独加入Mg钢的屈服强度和抗拉强度分别达到473 MPa和605 MPa,伸长率达到36.5%,-40℃冲击韧性达到188 J,与未添加Mg-Zr钢相比,屈服强度、抗拉强度、冲击韧性和伸长率分别提高38 MPa,70 MPa,68 J和8%。  相似文献   

20.
利用扫描电镜(SEM)、透射电镜(TEM)对炉卷轧机生产X100管线钢的显微组织特点进行了观察与分析,通过背散射电子衍射技术(EBSD)探讨了X100管线钢的有效晶粒尺寸与低温韧性的关系,并利用物理化学相分析的方法对X100管线钢的析出粒子尺寸分布和强化作用进行了定量分析. 结果表明:X100管线钢的显微组织以粒状贝氏体为主,晶粒内部和晶界上弥散分布着大量细小的马氏体/奥氏体(M/A)岛;X100管线钢的有效晶粒尺寸较小,仅为2μm左右,细化有效晶粒尺寸和降低组织方向性有利于提高管线钢的低温韧性;X100管线钢中的析出粒子尺寸较小,平均尺寸为45.4nm,但由于其总体质量分数只有0.062%,经计算,其析出强化作用约为52MPa,析出强化对屈服强度贡献较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号